Skip to main content
Log in

Experimental Carbothermal Reduction of Al2O3 at Low Pressure Using Concentrated Solar Energy

  • Research Article
  • Published:
Journal of Sustainable Metallurgy Aims and scope Submit manuscript

Abstract

The carbothermal reduction of Al2O3 under primary vacuum using concentrated solar energy is a clean process for the production of energetic aluminum. However, undesirable by-products can be formed if the physico-chemical parameters (pressure, temperature) are not optimized. In the present work, the Sol@rmet reactor has been used to perform this reaction in the following pressure and temperature ranges, respectively, 280 to 880 Pa and in between 1800 and 2200 K. In particular, at total pressures lower than 400 Pa and at temperature around 2050–2150 K, collected powders with Al content higher than 90% have been obtained (maximum achieved Al yield close to 70%). It has also been shown that the use of a binding agent (in the reactants) and/or a change of the partial pressure of CO in the reactor could have a major influence on the formed Al/CO ratio. Finally, kinetic calculations on experiments performed at 380 Pa demonstrate that the phase boundary reaction and the nucleation process dominate the first stage of the carbothermal reduction of Al2O3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Bergthorson JM, Goroshin S, Soo MJ, Julien P, Palecka J, Frost DL, Jarvis DJ (2015) Direct combustion of recyclable metal fuels for zero-carbon heat and power. Appl Energy 160:368–382

    Article  CAS  Google Scholar 

  2. Bergthorson JM (2018) Recyclable metal fuels for clean and compact zero-carbon power. Prog Energy Combust Sci 68:169–196

    Article  Google Scholar 

  3. Life cycle inventory data and environmental metrics for the primary aluminium industry, 2015 data. International Aluminum Institute. https://www.world-aluminium.org. Accessed on 24 June 2019

  4. Steinfeld A (1997) High temperature solar thermochemistry for CO2 mitigation in the extractive metallurgical industry. Energy 22:311–316

    Article  CAS  Google Scholar 

  5. Steinfeld A, Kuhn P, Reller A, Palumbo R, Murray J, Tamaura Y (1998) Solar-processed metals clean energy carriers and water-splitters. Int J Hydrog Energy 23:767–774

    Article  CAS  Google Scholar 

  6. Murray JP, Steinfeld A, Fletcher EA (1995) Metals, nitrides and carbides via solar carbothermal reduction of metal oxides. Energy 20:695–704

    Article  CAS  Google Scholar 

  7. Murray JP (1999) Aluminum production using high-temperature solar process heat. Sol Energy 66(2):133–149

    Article  CAS  Google Scholar 

  8. Rhamdhani MA, Dewan MA, Brooks GA, Monaghan BJ, Prentice L (2013) Alternative Al production methods: Part 1—a review of indirect carbothermal routes. Trans Inst Min Metall C 122(2):87–104

    CAS  Google Scholar 

  9. Dewan MA, Rhamdhani MA, Brooks GA, Monaghan BJ, Prentice L (2013) Alternative Al production methods: Part 2—thermodynamic analyses of indirect carbothermal routes. Trans Inst Min Metall C 122(2):113–121

    CAS  Google Scholar 

  10. Feng Y-B, Yang B, Dai Y-N (2014) Thermodynamics on formation of C, Al4C3 and Al2O3 in AlCl disproportionation process in vacuum to produce aluminum. Trans Nonferr Met Soc China 24:3366–3371

    Article  CAS  Google Scholar 

  11. Huda N, Khaliq A, Rhamdhani MA, Sheppard D, Brooks G, Monaghan B, Prentice L (2017) Novel multi-stage aluminium production: Part 2—experimental investigation on carbosulphidation of Al2O3 using H2S and sodiothermic reduction of Al2S3. Miner Process Extract Metall 126(4):245–258

    Article  CAS  Google Scholar 

  12. Yuan HB, Yang B, Xu BQ, Yu QC, Feng YB, Dai YN (2010) Aluminum production by carbothermo-chlorination reduction of alumina in vacuum. Trans Nonferr Met Soc China 20:1505–1510

    Article  CAS  Google Scholar 

  13. Halmann M, Frei A, Steinfeld A (2011) Vacuum carbothermic reduction of Al2O3, BeO, MgO–CaO, TiO2, ZrO2, HfO2 + ZrO2, SiO2, SiO2 + Fe2O3, and GeO2 to the metals. A thermodynamic study. Miner Process Extract Metall Rev 32:247–266

    Article  CAS  Google Scholar 

  14. Kruesi M, Galvez ME, Halmann M, Steinfeld A (2011) Solar aluminum production by vacuum carbothermal reduction of alumina—thermodynamic and experimental analyses. Metall Mater Trans 42:B254–B260

    Article  Google Scholar 

  15. Balomenos E, Panias D, Paspaliaris I (2012) Exergy analysis of metal oxide carbothermic reduction under vacuum—sustainability prospects. Int J Thermodyn 15(3):141–148

    CAS  Google Scholar 

  16. Ostrovski O, Zhang G, Kononov R, Dewan MAR, Li J (2010) Carbothermal solid state reduction of stable metal oxides. Steel Res Int 81:841–846

    Article  CAS  Google Scholar 

  17. Li J, Zhang G, Liu D, Ostrovski O (2011) Low-temperature synthesis of aluminum carbide. ISIJ Int 51(6):870–877

    Article  CAS  Google Scholar 

  18. Halmann M, Frei A, Steinfeld A (2007) Carbothermal reduction of alumina: thermochemical equilibrium calculations and experimental investigations. Energy 32:2420–2427

    Article  CAS  Google Scholar 

  19. Yu W, Yang B, Chen X, Jiang W, Yu Q, Xu B (2012) Thermodynamic calculation and experimental investigation on the products of carbothermal reduction of Al2O3 under vacuum. Vacuum 86:2005–2009

    Article  CAS  Google Scholar 

  20. Chatoouh A, Benioub R, Itaka K (2018) Optimization of heating-temperature on carbothermal reduction of alumina for production of aluminum. Int J Biosens Bioelectron 4(2):57–62

    Google Scholar 

  21. Balomenos E, Panias D, Paspaliaris I, Friedrich B, Jaroni B, Steinfeld A, Guglielmini E, Halmann M, Epstein M, Vishnevetsky I (2011) Carbothermic reduction of alumina: a review of developed processes and novel concepts. In: Proceedings of European metallurgical conference 2011, Dusseldorf, Germany, pp 729–743

  22. Kemper C, Friedrich B, Diamantopoulos P, Abdomens E, Panias D, Paspaliaris I (2013) Investigation of a novel concept for carbothermic reduction of alumina. In: Poster European metallurgical conference 2013, Weimar, Germany

  23. Vishnevetsky I, Epstein M, Rubin R (2014) Solar carboreduction of alumina under vacuum. Energy Procedia 49:2059–2069

    Article  CAS  Google Scholar 

  24. Vishnevetsky I, Epstein M (2015) Solar carbothermic reduction of alumina, magnesia and boria under vacuum. Sol Energy 111:236–251

    Article  CAS  Google Scholar 

  25. Vishnevetsky I (2015) Solar thermal reduction of metal oxides as a promising way of converting CSP into clean electricity on demand. In: Proceedings of solar world congress 2015, Daegu, Korea

  26. Puig J, Balat-Pichelin M (2016) Production of metallic nanopowders (Mg, Al) by solar carbothermal reduction of their oxides at low pressure. J Magnes Alloys 4:140–150

    Article  CAS  Google Scholar 

  27. Puig J, Balat-Pichelin M (2017) Production of Mg and Al using concentrated solar energy for future fuel applications. In: Proceedings of European metallurgical conference 2017, Leipzig, Germany, pp 817–832

  28. Puig J, Balat-Pichelin M (2018) Experimental carbothermal reduction of MgO at low pressure using concentrated solar energy. J Min Metall B 54(1):39–50

    Article  CAS  Google Scholar 

  29. Chung FH (1974) Quantitative interpretation of X-ray diffraction patterns, I. Matrix-flushing method of quantitative multicomponent analysis. J Appl Crystallogr 7:513–519

    Google Scholar 

  30. Snyder RL (1992) The use of reference intensity ratios in X-ray quantitative analysis. Powder Diffr 7:186–193

    Article  CAS  Google Scholar 

  31. Sundar Murti NS, Seshadri V (1982) Kinetics of reduction of synthetic chromite with carbon. Trans Iron Steel Inst Jpn 22(12):925–933

    Article  CAS  Google Scholar 

  32. Ray H (1993) Kinetics of metallurgical reactions. Oxford and IBH Publishing, New Delhi. ISBN 81-0204-0747-4

Download references

Acknowledgements

The authors thank E. Bêche for the Rietveld analysis realized using XRD data of the powder collected on the filter after the experiment B.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Puig.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

The contributing editor for this article was Bernd Friedrich.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Puig, J., Balat-Pichelin, M. Experimental Carbothermal Reduction of Al2O3 at Low Pressure Using Concentrated Solar Energy. J. Sustain. Metall. 6, 161–173 (2020). https://doi.org/10.1007/s40831-020-00266-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40831-020-00266-7

Keywords

Navigation