Skip to main content
Log in

The effect of Ag and clay nanoparticles on the antimicrobial activity of gamma-irradiated alginate/pectin beads

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

In spite of the intensive work done on the preparation, characterization and applications of silver nanoparticles, the problems limit its use, still under study. One of these solutions is embedding Ag NPs in natural polymers to decrease aggregation, control its toxicity and size, and to increase its stability as well. In this respect, ionically cross-linked alginate/pectin (ALG/PEC) beads containing silver and clay nanoparticles, with different compositions were prepared. Silver nanoparticles have been obtained with hydrogel networks as nonreactors via in situ reduction of pre-adsorbed silver ions onto (ALG/PEC) beads matrix, using gamma irradiation. The effects of the composition of the two polymers, concentration of CaCl2 as a crosslinking agent on the formation of cross-linked beads were studied. Characterization of (ALG/PEC) beads, (ALG/PEC)/Ag and (ALG/PEC)/Clay-Ag nanocomposite beads were performed using scanning electron microscopy, transmission electron microscopy and X-ray diffraction (XRD). The XRD pattern obtained confirmed the presence of diffraction peaks related to Ag NPs and nanoclay. The antimicrobial activity, toward different micro-organisms of the prepared nanocomposite beads was examined. The Beads containing both Ag NPs and Nanoclay exhibited the highest antimicrobial activity for the different organisms chosen for the antimicrobial test.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Kim, J.Y., Ihn, K.J., Na, J.S.: Synthesis of silver nanoparticles within intercalated clay/polymer nanocomposite via in situ electron transfer reaction. J. Ind. Eng. Chem. 17, 248–253 (2011)

    Article  CAS  Google Scholar 

  2. Li, S.M., Jia, N., Maa, M.G., Zhang, Z., Liu, Q.H., Sun, R.C.: Cellulose–silver nanocomposites: microwave-assisted synthesis, characterization, their thermal stability, and antimicrobial property. Carbohydr. Polym. 86, 441–447 (2011)

    Article  CAS  Google Scholar 

  3. Rhim, J.W., Ng, P.K.W.: Natural biopolymer-based nanocomposite films for packaging applications. Crit. Rev. Food Sci. Nutr. 47, 411–433 (2007)

    Article  CAS  Google Scholar 

  4. Sharma, V.K., Yngard, R.A., Lin, Y.: Silver nanoparticles: green synthesis and their antimicrobial activities. Adv. Colloid Interface Sci. 145, 83–96 (2009)

    Article  CAS  Google Scholar 

  5. Deen, G.R., Chua, V.: Synthesis and properties of new “stimuli” responsive nanocomposite hydrogels containing silver nanoparticles. Gels 1, 117–134 (2015)

    Article  Google Scholar 

  6. Kanmani, P., Rhim, J.W.: Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing Ag NPs and Nano clay. Food Hydrocoll. 35, 644–652 (2014)

    Article  CAS  Google Scholar 

  7. González-Sánchez, M.I., Tommasi, S.P.G., Morris, N.G.M., Hawkins, K., López-Cabarcos, E., Prokopovich, P.: Silver nanoparticle based antibacterial methacrylate hydrogels potential for bone graft applications. Mater. Sci. Eng. C 50, 332–340 (2015)

    Article  Google Scholar 

  8. Honary, S., Ghajar, K., Khazaeli, P., Shalchian, P.: Preparation, characterization and antibacterial properties of silver-chitosan nanocomposites using different molecular weight grades of chitosan. Trop. J. Pharmaceut. Res. 10(1), 69–74 (2011)

    CAS  Google Scholar 

  9. Mahmud, S., Sultana, M., Pervez, M., Habib, M., Hui-Hong, L.: Surface functionalization of “rajshahi silk” using green silver nanoparticles. Fibers 5, 352 (2017)

    Article  Google Scholar 

  10. Hwang, J.J., Ma, T.W.: Preparation, morphology, and antibacterial properties of polyacrylonitrile/montmorillonite/silver nanocomposites. Mater. Chem. Phys. 136, 613–623 (2012)

    Article  CAS  Google Scholar 

  11. Roy, A., Joshi, M., Butola, B., Srivastava, A.K.: Silver-loaded HDPE/clay nanocomposites with antibacterial property: a potential replacement for commodity polyethylene plastic. Polym. Compos. 39(S1), E366–E377 (2018)

    Article  CAS  Google Scholar 

  12. Durán, N., Durán, M., de Jesus, M.B., Seabra, A.B., Fávaro, W.J., Nakazato, G.: Silver nanoparticles: a new view on mechanistic aspects on antimicrobial activity. Nanomed. Nanotechnol. Biol. Med. 12(3), 789–799 (2016)

    Article  Google Scholar 

  13. Wong, K.K.Y., Liu, X.: Silver nanoparticles—the real “silver bullet” in clinical medicine. Med. Chem. Commun. 1(1), 25-31 (2010)

    Google Scholar 

  14. Lok, C.N., Ho, C.M., Chen, R., He, Q.Y., Yu, W.Y., Sun, H., Tam, P.K., Chiu, J.F., Che, C.M.: Proteomic analysis of the mode of antibacterial action of silver nanoparticles. J. Proteome Res. 5(4), 916–924 (2006)

    Article  CAS  Google Scholar 

  15. Bekhit, M., Arab-Tehrany, E., Kahn, C.J.F., Cleymand, F., Fleutot, S., Desobry, S., Sánchez-González, L.: Bioactive films containing alginate-pectin composite microbeads with Lactococcus lactis subsp. lactis: physicochemical characterization and antilisterial activity. Int. J. Mol. Sci. 19(2), 574 (2018)

    Article  Google Scholar 

  16. Abou El Fadl, F.I.: Radiation grafting of ionically crosslinked alginate/chitosan beads with acrylic acid for lead sorption. J. Radioanal. Nucl. Chem. 301, 529–535 (2014)

    Article  CAS  Google Scholar 

  17. Kowalski, G., Kijowska, K., Witczak, M., Kuterasínski, L., Łukasiewicz, M.: Synthesis and effect of structure on swelling properties of hydrogels based on high methylated pectin and acrylic polymers. Polymers 11, 114 (2019)

    Article  Google Scholar 

  18. Abou El Fadl, F.I., Mahmoud, G.A., Mohamed, A.A.: Effect of metal nanoparticles on the catalytic activity of pectin (poly vinyl alcohol-co-polyacrylamide) nanocomposite hydrogels. J. Inorg. Organomet. Polym. Mater. 29, 332–339 (2019)

    Article  CAS  Google Scholar 

  19. Reddy, P.R.S., Eswarammam, S., Rao, K.S.V.K., Lee, Y.: Dual responsive pectin hydrogels and their silver nanocomposites: swelling studies, controlled drug delivery and antimicrobial applications. Bull. Korean Chem. Soc. 35(8), 2391 (2014)

    Article  CAS  Google Scholar 

  20. Rhim, J.W., Wang, L.F., Hong, S.I.: Preparation and characterization of agar/silver nanoparticles composite films with antimicrobial activity. Food Hydrocoll. 33, 327 (2013)

    Article  CAS  Google Scholar 

  21. Chowdappa, P., Shivakumar, G., Chethanna, C.S., Madhura, S.: Antifungal activity of Chitosan-silver nanoparticle composite against Collectotrichum gloeosporioides associated with Mango anthracnose. Afr. J. Microbiol. Res. 8(17), 1803–1812 (2014)

    Article  Google Scholar 

  22. Makwana, D.: Characterization of Agar-CMC/Ag-MMT nanocomposite and evaluation of antibacterial and mechanical properties for packaging applications. Arab. J. Chem. 13(1), 3092–3099 (2020)

    Article  CAS  Google Scholar 

  23. Bandla, M., Abbavaram, B.R., Kokkarachedu, V., Sadiku, R.E.: Silver nanoparticles incorporated within intercalated clay/polymer nanocomposite hydrogels for antibacterial studies. Polym. Compos. 38, E16–E23 (2017)

    Article  CAS  Google Scholar 

  24. Abdeldaiem, M.H.: Use of yellow pigment extracted from turmeric (curcuma longa) rhizomes powder as natural food preservative. Am. J. Food Sci. Technol. 2(1), 36 (2014)

    Google Scholar 

  25. Gurikov, P., Smirnova, I.: Non-conventional methods for gelation of alginate. Gels 4, 14 (2018)

    Article  Google Scholar 

  26. Burridge, K., Johnston, J., Borrmann, T.: Silver nanoparticle–clay composites. J. Mater. Chem. 21, 734–742 (2011)

    Article  CAS  Google Scholar 

  27. Rao, Y.N., Banerjee, D., Datta, A., Das, S.K., Guin, R., Saha, A.: Gamma irradiation route to synthesis of highly re-dispersible natural polymer capped silver nanoparticles. Radiat. Phys. Chem. 79, 1240–1246 (2010)

    Article  CAS  Google Scholar 

  28. Long, D., Wu, G., Chen, S.: Preparation of oligochitosan stabilized silver nanoparticles by gamma irradiation. Radiat. Phys. Chem. 76, 1126–1131 (2007)

    Article  CAS  Google Scholar 

  29. Murthy, P.S.K., Murali, M.Y., Varaprasad, K., Sreedhar, B., Mohana, R.K.: First successful design of semi-IPN hydrogel–silver nanocomposites: a facile approach for antibacterial application. J. Colloid Interface Sci. 318, 217 (2008)

    Article  CAS  Google Scholar 

  30. Shameli, K., Bin Ahmad, M., Zargar, M., Yunus, W.M.Z.W., Rustaiyan, A., Ibrahim, N.A.: Synthesis of silver nanoparticles in montmorillonite and their antibacterial behavior. Int. J. Nanomed. 6, 581–590 (2011)

    Article  CAS  Google Scholar 

  31. Shu-Ming, L., Ning, J., Jie-Fang, Z., Ming-Guo, M., Feng, X., Bo, W., Run-Cang, S.: Rapid microwave-assisted preparation and characterization of cellulose–silver Nano-composites. Carbohydr. Polym. 83, 422 (2011)

    Article  Google Scholar 

  32. Khalid, M.Z., Mohammad, Z., Mehdi, B., Abdul Jabbar, M.K.K.: XRD pattern of chitin based polyurethane bio-nano-composites. Carbohydr. Polym. 80, 539 (2010)

    Article  Google Scholar 

  33. Sikorski, P., Mo, F., Skjåk-Bræk, G.: Evidence for egg-box-compatible interactions in calcium–alginate gels from fiber X-ray diffraction. Biomacromolecules 8, 2098 (2007)

    Article  CAS  Google Scholar 

  34. Ibrahim, M.S., Abou El Fadl, I.F., El-Naggar, A.A.: Preparation and characterization of crosslinked alginate–CMC beads for controlled release of nitrate salt. J. Radioanal. Nucl. Chem. 299, 1531–1537 (2014)

    Article  CAS  Google Scholar 

  35. Ianchis, R., Ninciuleanu, C.M., Gifu, I.C., Alexandrescu, E., Somoghi, R., Gabor, A.R., Preda, S., Nistor, C.L., Nitu, S., Petcu, C., Icriverzi, M., Florian, P.E., Roseanu, A.M.: Novel hydrogel-advanced modified clay nanocomposites as possible vehicles for drug delivery and controlled release. Nanomaterials 7, 443 (2017)

    Article  Google Scholar 

  36. Shahverdi, A.R., Fakhimi, A., Shahverdi, H.R., Minaian, S.: Synthesis and effect of silver nanoparticles on the antibacterial activity of different antibiotics against Staphylococcus aureus and Escherichia coli. Nano Med. Nanotechnol. Biol. Med. 3(2), 168 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are very grateful to assist, prof., Heba El Bialy, Assis., professor of microbiology, for her great help in the antimicrobial test.

Funding

This research did not receive any specific grant from funding agencies in the public, commercial, or not-for-profit sectors.

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by FIAEF, and SMI. The first draft of the manuscript was written by FIAEF and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Faten Ismail Abou El Fadl.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Abou El Fadl, F.I., Ibrahim, S.M. The effect of Ag and clay nanoparticles on the antimicrobial activity of gamma-irradiated alginate/pectin beads. J Nanostruct Chem 10, 243–253 (2020). https://doi.org/10.1007/s40097-020-00345-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-020-00345-x

Keywords

Navigation