Skip to main content
Log in

Thermodynamic studies of carbon nanotube interaction with Gemcitabine anticancer drug: DFT calculations

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

One of the main causes worldwide is cancer. One of the important approaches to cancer treatment is the use of chemotherapy drugs but nowadays, the use of smart drugs by researchers is being used to treat cancer. The most important carrier of drug delivery to cells is the use of carbon nanotubes. In this research, the possibility of formation of interactions between carbon nanotube and Gemcitabine anticancer drug is investigated with M06/6-311G level. The results obtained by M06/6-311G level indicate adsorption of the drug into nanotubes is physical. The obtained interaction energy and obtained bonding energy values with standard method were corrected by basis set superposition error (BSSE) on the same level of theory. The binding energy in the solvent phase is lower than the gas phase. Hence, the stability of the studied reaction increases in solvent phase with regard to the gas phase. The NBO analysis shows which the transfer electron can occur from the lone pair of Nitrogen (donor atom) in the Gemcitabine to the \( \sigma^{ * } \) orbital of the carbon atoms (acceptor atoms) in single-walled carbon nanotube. As well as the data of the atoms in a molecule (AIM) theory showed which the N17–C61 bond is a partial covalent bond.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Guo, Z., Sadler, P.J., Tsang, S.C.: Immobilization and visualization of DNA and proteins on carbon nanotubes. Adv. Mater. 10, 701–703 (1998)

    Article  CAS  Google Scholar 

  2. Guo, Q., Shen, X.T., Li, Y.Y., Xu, S.Q.: Carbon nanotubes-based drug delivery to cancer and brain. Curr. Med. Sci. 37, 635–641 (2017)

    Article  CAS  Google Scholar 

  3. Alshehri, R., Ilyas, A.M., Hasan, A., Arnaout, A., Ahmed, F., Memic, A.: Carbon nanotubes in biomedical applications: factors, mechanisms, and remedies of toxicity. J. Med. Chem. 59, 8149–8167 (2016)

    Article  CAS  Google Scholar 

  4. He, H., Pham-Huy, L.A., Dramou, P., Xiao, D.L., Zuo, P.L., Pham-Huy, C.: Carbon nanotubes: applications in pharmacy and medicine. Biomed. Res. Int. (2013). https://doi.org/10.1155/2013/578290

    Article  PubMed  PubMed Central  Google Scholar 

  5. Iijima, S., Ichihashi, T.: Single-shell carbon nanotubes of 1-nm diameter. Nature. 363, 603–605 (1993)

    Article  CAS  Google Scholar 

  6. Ramalingame, R., Lakshmanan, A., Muller, F., Thomas, U., Kanoun, O.: Highly sensitive capacitive pressure sensors for robotic applications based on carbon nanotubes and PDMS polymer nanocomposite. J. Sens. Sens. Syst. 8, 87–94 (2019)

    Article  Google Scholar 

  7. Lin, J.N., Yeh, C.Y., Pan, Y.N., Lin, M.C., Fan, F.Y.: Effect of carbon nanotubes on in vitro cellular responses for bioglass application. Mater. Lett. 235, 141–143 (2019)

    Article  CAS  Google Scholar 

  8. Filatzikioti, A., Glezos, N., Kantarelou, V., Kyriakis, A., Pilatos, G., Romanos, G., Speliotis, T., Stathopoulou, D.J.: Carbon nanotube Schottky type photodetectors for UV applications. Solid State Electron. Lett. 151, 27–35 (2019)

    Article  CAS  Google Scholar 

  9. Muhulet, A., Miculescu, F., Voicu, S.I., Schutt, F., Thakur, V.K., Mishra, Y.K.: Fundamentals and scopes of doped carbon nanotubes towards energy and biosensing applications. Mater. Today Energy. 9, 154–186 (2018)

    Article  Google Scholar 

  10. Abdulla, S., Mathew, T.L., Pullithadathil, B.: Highly sensitive, room temperature gas sensor based on polyaniline-multiwalled carbon nanotubes (PANI/MWCNTs) nanocomposite for trace-level ammonia detection. Sens. Actuators B-Chem. 221, 1523–1534 (2015)

    Article  CAS  Google Scholar 

  11. Yengejeh, S.I., Kazemi, S.A.: Ochsner, A: carbon nanotubes as reinforcement in composites: A review of the analytical, numerical and experimental approaches. Comput. Mater. Sci. 136, 85–101 (2017)

    Article  Google Scholar 

  12. Kurban, M.: Electronic structure, optical and structural properties of Si, Ni, B and N-doped a carbon nanotube: DFT study. Optik. 172, 295–301 (2018)

    Article  CAS  Google Scholar 

  13. Zhu, W., Huang, H., Dong, Y., Han, C., Sui, X., Jian, B.: Multi-walled carbon nanotube-based systems for improving the controlled release of insoluble drug dipyridamole. Exp Ther Med. 17(6), 4610–4616 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  14. Ihsan, U.: Carbon nanotube membranes for water purification: developments, challenges, and prospects for the future. Sep. Purif. Technol. 209, 307–337 (2019)

    Article  Google Scholar 

  15. Muz, I., Kurban, M.: A comprehensive study on electronic structure and optical properties of carbon nanotubes with doped B, Al, Ga, Si, Ge, N, and P and as and different diameters. J. Alloys Compd. 802, 25–35 (2019)

    Article  CAS  Google Scholar 

  16. Zhu, W., Huang, H., Dong, Y., Han, C., Sui, X., Jian, B.: Multi-walled carbon nanotube-based systems for improving the controlled release of insoluble drug dipyridamole. Exp. Ther. Med. 17, 4610–4616 (2019)

    CAS  PubMed  PubMed Central  Google Scholar 

  17. Venkataraman, A., Amadi, E.V., Chen, Y., Papadopoulos, C.: Carbon nanotube Assembly and Integration for Applications. Nanoscale Res. Lett. 14(220), 2–47 (2019)

    Google Scholar 

  18. Alarifi, I.M.: Investigation the conductivity of carbon fiber composites focusing on measurement techniques under dynamic and static loads. J Mater Res Technol. 8(5), 4863–4893 (2019)

    Article  CAS  Google Scholar 

  19. Wongwiriyapan, W., Inoue, S., Honda, S., Katayama, M.: Adsorption Kinetics of NO2 on Single-Walled Carbon Nanotube Thin-Film Sensor. Jpn J Appl Phys. 47(10), 8145–8147 (2008)

    Article  CAS  Google Scholar 

  20. Zhang, X.W., Ma, Y.X., Sun, Y., Coa, Y.B., Li, Q., Xu, C.A.: Gemcitabine in combination with a second cytotoxic agent in the first-line treatment of locally advanced or metastatic pancreatic cancer: a systematic review and meta-analysis. Target Oncol. 12(3), 309–321 (2017)

    Article  Google Scholar 

  21. Mananghaya, M.R., Santos, G.N., Yu, D.: Hydrogen adsorption of Ti-decorated boron nitride nanotube: a density functional based tight binding molecular dynamics study. Adsorption. 24(7), 683–690 (2018)

    Article  CAS  Google Scholar 

  22. Froudakis, G.E.: Hydrogen storage in nanotubes & nanostructures. Mater. Today 14(7–8), 324–328 (2011)

    Article  CAS  Google Scholar 

  23. Alvarellos, M.L., Lamba, J., Sangkuhl, K., Thorn, C.F., Wang, L., Klein, D.J., Altman, R.B., Klein, T.E.: PharmGKB summary: gemcitabine pathway: Pharmacogenet Genom. 24(11), 564–574 (2014)

    Article  CAS  Google Scholar 

  24. Mini, E., Nobili, S., Caciagli, B., Landini, I., Mazzei, T.: Cellular pharmacology of gemcitabine. Ann. Oncol. 17(5), 7–12 (2006)

    Article  Google Scholar 

  25. Cerqueira, N.M., Fernandes, P.A., Ramos, M.J.: Understanding ribonucleotide reductase inactivation by gemcitabine. Chem. Eur. 13(30), 8507–8515 (2007)

    Article  CAS  Google Scholar 

  26. Saliev, T.: The Advances in biomedical applications of carbon nanotubes. C. 5 (2), 29 (2019). https://doi.org/10.3390/c5020029

  27. Karelson, M., Tam, T., Zerner, M.C.: Multicavity reaction field method for the solvent effect description in flexible molecular systems. J. Phys. Chem. 97, 11901–11907 (1993)

    Article  CAS  Google Scholar 

  28. Begum, S.S., Gour, N.K., Sonavane, U., Ray, S.K., Deka, R.C.: Computational studies of anti-cancer drug mediated by graphene and reaction mechanism of drug generated alkyl radical with guanine. J. Mol. Struct. 1196, 527–535 (2019)

    Article  CAS  Google Scholar 

  29. Zare, K., Shadmani, N.: Comparison of drug delivery systems: Nanotube and p-sulphonato calix [4] aren, by density functional theory. J. Nanostruct. Chem. 3(1), 72–77 (2013)

    Article  Google Scholar 

  30. Zare, K., Shadmani, N., Pournamdari, E.: DFT/NBO study of nanotube and calixarene with anti-cancer drug. J. Nanostruct. Chem. 3(1), 75 (2013)

    Article  Google Scholar 

  31. Zare, K., Najafi, F., Sadegh, H.R., Shahryari, G.R.: Studies of ab intio and Monte Carlo simulation on interaction of fluorouracil anticancer drug with carbon nanotube. J Nanostruct. Chem. 3(1), 71 (2013)

    Article  Google Scholar 

  32. Kurban, M., Gunduz, B.: Electronic structure, optical and structural properties of organic 5, 5′-Dibromo-2, 2′-bithiophene. Optik 165, 370–379 (2018)

    Article  CAS  Google Scholar 

  33. Zhao, Y., Truhlar, D.G.: The M06 suite of density functionals for main group thermochemistry, thermochemical kinetics, noncovalent interactions, excited states, and transition elements: two new functionals and systematic testing of four M06-class functionals and 12 other functionals. Theor. Chem. Acc. 120, 215–241 (2008)

    Article  CAS  Google Scholar 

  34. Mananghaya, M.R., Santos, G.N., Yu, D.N.: Solubility of amide functionalized single wall carbon nanotubes: a quantum mechanical study. J. Mol. Liq. 242, 1208–1214 (2017)

    Article  CAS  Google Scholar 

  35. Mananghaya, M.R., Santos, G.N., Yu, D.: Solubility of aminotriethylene glycol functionalized single wall carbon nanotubes: a density functional based tight binding molecular dynamics study. J. Comput. Chem. 40(8), 952–958 (2019)

    Article  CAS  Google Scholar 

  36. Mehdizadeh, Kh, Giahi, M.: A DFT study on N–6–amino–hexylamide functionalized single–walled carbon nanotubes in interaction with silver ion in a gaseous environment. J Nanostructure Chem. 9, 39–51 (2019)

    Article  CAS  Google Scholar 

  37. Greiner, W., Neise, L., Stöcker, H: Thermodynamics And Statistical Mechanics. Springer. (1995)

  38. Zhao, Y., Huang, C., Kim, M., Wong, B.M., Léonard, F., Gopalan, P., Eriksson, M.A.: Functionalization of single-wall carbon nanotubes with chromophores of opposite internal dipole orientation. ACS Appl. Mater. Inter. 5(19), 9355–9361 (2013)

    Article  CAS  Google Scholar 

  39. Huang, C., Wang, R.K., Wong, B.M., McGee, D.J., et al.: Spectroscopic Properties of Nanotube-Chromophore Hybrids. ACS Nano 5(10), 7767–7774 (2011)

    Article  CAS  Google Scholar 

  40. Joo, Y., Brady, G.J., Shea, M.J., et al.: Isolation of pristine electronics grade semiconducting carbon nanotubes by switching the rigidity of the wrapping polymer backbone on demand. ACS Nano. 9(10), 10203–10213 (2015)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial and scientific support from the Islamic Azad University, Roudehen branch.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fahimeh Najafi.

Ethics declarations

Competing interests

The author declares that she has no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

See Tables 5, 6, 7, 8, 9, 10, 11, 12 and 13.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Najafi, F. Thermodynamic studies of carbon nanotube interaction with Gemcitabine anticancer drug: DFT calculations. J Nanostruct Chem 10, 227–242 (2020). https://doi.org/10.1007/s40097-020-00344-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-020-00344-y

Keywords

Navigation