Skip to main content
Log in

Shock wave-induced switchable magnetic phase transition behaviour of ZnFe2O4 ferrite nanoparticles

  • Original Research
  • Published:
Journal of Nanostructure in Chemistry Aims and scope Submit manuscript

Abstract

The present work is designed to investigate the impact of shock waves on Zinc Ferrite nanoparticles (ZnFe2O4) NPs. The test material was prepared by precipitation method and shock wave recovery experiment is done by tabletop pressure driven shock tube. The shock wave induced changes in structural, morphological and magnetic properties are noticed by various analytical techniques such as powder X-ray Diffractometer (PXRD), fourier-transform infrared spectroscopy (FTIR), scanning electron microscopy (SEM) and vibrating sample magnetometer (VSM) and the obtained PXRD results shows no significant structural changes. Switchable paramagnetic to superparamagnetic behaviour is observed during the shock wave loaded conditions. The mechanism of shock wave induced magnetic phase transition is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Ichiyanagi, K., Takagi, S., Kawai, N., Fukaya, R., Nozawa, S., Nakamura, K.G., Liss, K.-D., Kimura, M., Adachi, S.-I.: Microstructural deformation process of shock-compressed polycrystalline aluminium. Sci. Rep 9, 7604 (2019)

    Article  Google Scholar 

  2. Sivakumar, A., Suresh, S., Anto Pradeep, J., Balachandar, S., Martin Britto Dhas, S.A.: Effect of shock waves on dielectric properties of KDP crystal. J. Elect. Mater 47, 4831–4839 (2018)

    Article  CAS  Google Scholar 

  3. Kanel, G.I., Fortov, V.E., Razorenov, S.V.: Shock waves in condensed-state physics. Phys. Uspekhi 50, 771–791 (2007)

    Article  CAS  Google Scholar 

  4. Sivakumar, A., Saranraj, A., Sahaya Jude Dhas, S., Jose, M., Martin Britto Dhas, S.A.: Shock wave-induced defect engineering for investigation on optical properties of triglycine sulphate crystal. Opt. Eng. 58, 077104 (2019)

    Google Scholar 

  5. Rita, A., Sivakumar, A., Martin Britto Dhas, S.A.: Influence of shock waves on structural and morphological properties of copper oxide NPs for aerospace applications. J. Nanostruct. Chem 9, 225–230 (2019)

    Article  CAS  Google Scholar 

  6. Gopinath, N.K., Jagadeesh, G., Basu, B.: Shock wave-material interaction in ZrB 2–SiC based ultra high temperature ceramics for hypersonic applications. J Am Ceram Soc. 00, 1–14 (2019)

    Google Scholar 

  7. Koteeswara Reddy, N., Jayaram, V., Arunan, E., Kwon, Y.-B., Moon, W.J., Reddy, K.P.J.: Investigations on high enthalpy shock wave exposed graphitic carbon nanoparticles. Diam. Relat. Mater 35, 53–57 (2013)

    Article  Google Scholar 

  8. Zhao, N., Sugiyama, M., Ruggeri, T.: Phase transition induced by a shock wave in hard-sphereand hard-disk systems. J. Chem. Phys 129, 054506 (2008)

    Article  Google Scholar 

  9. Wang, S.J., Sui, M.L., Chen, Y.T., Lu, Q.H., Ma, E., Pei, X.Y., Li, Q.Z., Hu, H.B.: Microstructural fingerprints of phase transitions in shock-loaded iron. Sci. Rep 3, 1086 (2013)

    Article  CAS  Google Scholar 

  10. Kalaiarasi, S., Sivakumar, A., Martin Britto DhasJose, S.A.M.: Shock wave induced anatase to rutile TiO2 phase transition using pressure driven shock tube. Mater. Lett 219, 72–75 (2018)

    Article  CAS  Google Scholar 

  11. Devika, M., Koteeswara Reddy, N., Jayaram, V., Reddy, K.P.J.: Sustainability of aligned ZnO nanorods under dynamic shock-waves. Adv. Mater. Lett 8, 398–403 (2017)

    Article  CAS  Google Scholar 

  12. Ovidiu Caltuna, Y., Dumitru, I., Feder, M., Lupuc, N., Chiriac, H.: Substituted cobalt ferrites for sensors applications. J. Mag. Mag. Mater 320, 869–873 (2008)

    Article  Google Scholar 

  13. Fang, L.Z.K., Zhang, M., Nan, Z., Zhao, L., Zhou, D., Zhu, M., Li, W.: Tuning of spinel magnesium ferrite nanoparticles with enhanced magnetic properties. RSC Adv 8, 39177 (2018)

    Article  Google Scholar 

  14. Yao, C., Zeng, Q., Goya, G.F., Torres, T., Liu, J., Wu, H., Ge, M., Zeng, Y., Wang, Y., Jiang, J.Z.: ZnFe2O4 nanocrystals: synthesis and magnetic properties. J. Phys. Chem. C 111, 12274–12278 (2007)

    Article  CAS  Google Scholar 

  15. Levy, D., Pavese, A., Hanfland, M.: Phase transition of synthetic zinc ferrite (ZnFe2O4) at high pressure from synchrotron X-ray powder diffraction. Phys. Chem. Miner. 27, 638–664 (1999)

    Article  Google Scholar 

  16. Zhang, J., Zhang, Y., Xiaoxin, Wu, Ma, Y., Chien, S.-Y., Guan, R., Dongzhou, Z., Yange, B., Yan, B., Yang, J.: Correlation between structural changes and electrical transport properties of spinel ZnFe2O4 nanoparticles under high pressure. ACS Appl. Mater. Interfaces 201, 42856–42864 (2018)

    Article  Google Scholar 

  17. Rita, A., Sivakumar, A., Jose, M., Martin Britto Dhas, S.A.: Shock wave recovery studies on structural and magnetic properties of α-Fe2O3 NPs mater. Res. Express 6, 095035 (2019)

    Article  CAS  Google Scholar 

  18. Ammar, S., Jouini, N., Fievet, F., Beji, Z., Smiri, L., Moline, P., Danot, M., Greneche, J.-M.: Magnetic properties of zinc ferrite nanoparticles synthesized by hydrolysis in a polyol medium. J. Phys. Cond Matter 18, 9055–9069 (2006)

    Article  CAS  Google Scholar 

  19. Sivakumar, A., Victor, C., Muralidhr Nayak, M., Martin Britto Dhas, S.A.: Structural, optical, and morphological stability of ZnO nano rods under shock wave loading conditions. Mater. Res. Express 6, 045031 (2019)

    Article  Google Scholar 

  20. Wang, Z., O’Neill, H.S.C., Lazor, P., Saxena, S.K.: High pressure Raman spectroscopy study of spinel MgCr2O4. J. Phy. Chem. Solid 63, 2057–2061 (2002)

    Article  CAS  Google Scholar 

  21. Sivakumar, A., Suresh, S., Balachandar, S., Thirupathy, J., Kalyana Sundar, J., Martin Britto Dhas, S.A.: Effect of shock waves on thermophysical properties of ADP and KDP crystals. Optic. Laser. Tech 11, 284–289 (2019)

    Article  Google Scholar 

  22. Ramesh Babu, R., Ramesh, R., Kanagesan, S., Karthigeyan, A., Ponnusamy, S.: Synthesis and study of structural, morphological and magnetic properties of ZnFe2O4 nanoparticles. J Supercond Nov Magn 27, 1499–1502 (2014)

    Article  CAS  Google Scholar 

  23. Samoila, P., Cojocaru, C., Cretescu, I., Stan, C.D., Nica, V., Sacarescu, L., Harabagiu, V.: Nanosized spinel ferrites synthesized by sol-gel auto combustion for optimized removal of azo dye from aqueous solution. J. Nano Mater. (2015). https://doi.org/10.1155/2015/713802

    Article  Google Scholar 

  24. Thirupathi, G., Singh, R.: Magnetic properties of zinc ferrite nanoparticles. IEEE Trans. Magn 48, 3630 (2012)

    Article  CAS  Google Scholar 

  25. Flores-Arias, Y., Vázquez-Victorio, G., Ortega-Zempoalteca, R., Acevedo-Salas, U., Ammar, S., Valenzuela, R.: Magnetic phase transitions in ferrite nanoparticles characterized by electron spin resonance. J. Appl. Phys 117, 503 (2015)

    Article  Google Scholar 

  26. Guo, P., Cui, L., Wang, Y., Lv, M., Wang, B., Zhao, X.S.: Synthesis of ZnFe2O4 nanoparticles with tunable magnetic and sensing properties. Langmuir 29, 8997–9003 (2013)

    Article  CAS  Google Scholar 

  27. Guria, A.K., Dey, K., Sarkar, S., Patra, B.K., Giri, S., Pradhan, N.: Tuning the growth pattern in 2D confinement regime of Sm2O3 and the emerging room temperature unusual superparamagnetism. Sci. Rep 4, 6514 (2014)

    Article  CAS  Google Scholar 

  28. Ravikumar, P., Kisan, B., Perumal, A.: Enhanced room temperature ferromagnetism in antiferromagnetic NiO nanoparticles; enhanced room temperature ferromagnetism in antiferromagnetic NiO nanoparticles. AIP Adv. 5, 087116 (2015)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Author contribution statement

V.M conducted the research experiments and analyzed the data. A.S and S.A.M.B.D contributed shock wave experiments. C.S.N and A.R.P contributed the analytical studies. R.R. designed the research work and wrote the article.

Corresponding author

Correspondence to R. Robert.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mowlika, V., Sivakumar, A., Martin Britto Dhas, S.A. et al. Shock wave-induced switchable magnetic phase transition behaviour of ZnFe2O4 ferrite nanoparticles. J Nanostruct Chem 10, 203–209 (2020). https://doi.org/10.1007/s40097-020-00342-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40097-020-00342-0

Keywords

Navigation