Skip to main content
Log in

Low-Level Wind Shear Characteristics and Lidar-Based Alerting at Lanzhou Zhongchuan International Airport, China

  • Regular Article
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Lanzhou Zhongchuan International Airport [International Civil Aviation Organization (ICAO) code ZLLL] is located in a wind shear prone area in China, where most low-level wind shear events occur in dry weather conditions. We analyzed temporal distribution and synoptic circulation background for 18 dry wind shear events reported by pilots at ZLLL by using the NCEP final (FNL) operational global analysis data, and then proposed a lidar-based regional divergence algorithm (RDA) to determine wind shear intensity and location. Low-level wind shear at ZLLL usually occurs in the afternoon and evening in dry conditions. Most wind shear events occur in an unstable atmosphere over ZLLL, with changes in wind speed or direction generally found at 700 hPa and 10-m height. Based on synoptic circulations at 700 hPa, wind shear events could be classified as strong northerly, convergence, southerly, and weak wind types. The proposed RDA successfully identified low-level wind shear except one southerly case, achieving 94% alerting rate compared with 82% for the operational system at ZLLL and 88% for the ramp detection algorithm (widely used in some operational alert systems) based on the same dataset. The RDA-unidentified southerly case occurred in a near neutral atmosphere, and wind speed change could not be captured by the Doppler lidar.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Augros, C., P. Tabary, A. Anquez, et al., 2013: Development of a nationwide, low-level wind shear mosaic in France. Wea Forecasting, 8, 1241–1260, doi: 0.1175/WA-D-12-00115.1.

    Article  Google Scholar 

  • Boilley, A., and J.-F. Mahfouf, 2013: Wind shear over the Nice Côte d’Azur airport: Case studies. Nat. Hazards Earth Syst. Sci., 13, 2223–2238, doi: 10.5194/nhess-13-2223-2013.

    Article  Google Scholar 

  • Chan, P. W., 2012: Application of LIDAR-based F-factor in wind-shear alerting. Meteor. Z, 21, 193–204, doi: 10.1127/0941-2948/2012/0321.

    Article  Google Scholar 

  • Chan, P. W., K. K. Hon, and D. K. Shin, 2011: Combined use of headwind ramps and gradients based on LIDAR data in the alerting of low-level windshear/turbulence. Meteor. Z, 20, 661–670, doi: 10.1127/0941-2948/2011/0242.

    Article  Google Scholar 

  • Chen, Y., J. L. An, X. Q. Wang, et al., 2017: Observation of wind shear during evening transition and an estimation of sub-micron aerosol concentrations in Beijing using a Doppler wind lidar. J. Meteor. Res., 31, 350–362, doi: 101007/s13351-017-6036-3.

    Article  Google Scholar 

  • Choy, B. L., O. S. M. Lee, C. M. Shun, et al., 2004: Prototype automatic LIDAR-based wind shear detection algorithms. Proc. 11th Conference on Aviation, Range, and Aerospace Meteorology, Amer. Meteor. Soc, Hyannis, USA, P4.11.

    Google Scholar 

  • Dang, B., W. Z. Sun, J. Y. Wang, et al., 2013: Analysis of low-altitude wind shear cases at Lanzhou Zhongchuan Airport during 2004-2007. J. Lanzhou Univ. (Nat. Sci.), 49, 63–69, doi: 10.3969/j.issn.0455-2059.2013.01.012. (in Chinese)

    Google Scholar 

  • Evans, J., and D. Turnbull, 1989: Development of an automated windshear detection system using Doppler weather radar. Proc. IEEE, 77, 1661–1673, doi: 10.1109/5.47729.

    Article  Google Scholar 

  • Fujita, T. T., and F. Caracena, 1977: An analysis of three weather-related aircraft accidents. Bull. Amer. Meteor. Soc, 58, 1164–1181, doi: 10.1175/1520-0477(1977)058<1164:AAOT-WR>2.0.CO;2.

    Article  Google Scholar 

  • Goff, R. C., 1980: The Low-Level Wind Shear Alert System (LL-WSAS). FAA-RD-80-45, National Aviation Facilities Experimental Center, Atlantic City, New Jersey, 120 pp.

    Google Scholar 

  • Gultepe, I., A. J. Heymsfield, and D. H. Lenschow, 1990: A comparison of vertical velocity in cirrus obtained from aircraft and lidar divergence measurements during FIRE. J. Atmos. Oceanic Technol, 7, 58–67, doi: 10.1175/1520-0426(1990) 007<0058:ACOVVI>2.0.CO;2.

    Article  Google Scholar 

  • Hallowell, R. G., and J. Y. N. Cho, 2010: Wind-shear system cost-benefit analysis. Lincoln Laboratory Journal, 18, 47–68.

    Google Scholar 

  • Hermes, L. G., A. Witt, S. D. Smith, et al., 1993: The gust-front detection and wind-shift algorithms for the terminal Doppler weather radar system. J. Atmos. Oceanic Technol, 10, 693–709, doi: 0.1175152004261993)010<0693TGFDA W>2.0.CO;2.

    Article  Google Scholar 

  • Hong Kong Observatory (HKO), International Federation of Air Line Pilots’ Associations (IFALPA), and The Guild of Air Pilots and Air Navigators (GAPAN), 2010: Windshear and Turbulence in Hong Kong—Information for Pilots, 3rd ed. HKO, Hong Kong Special Administrative Region Government, 1–18.

    Google Scholar 

  • International Civil Aviation Organization (ICAO), 2005: Manual on Low-Level Wind Shear and Turbulence. ICAO, Montréal, Québec, 222 pp.

    Google Scholar 

  • Jiang, L. H., Y. Yan, X. L. Xiong, et al., 2016: Doppler lidar alerting algorithm of low-level wind shear based on ramps detection. Infrared and Laser Engineering, 45, 0106001, doi: 10.3788/IRLA201645.0106001. (in Chinese)

    Article  Google Scholar 

  • Keohan, C. F., K. Barr, and S. M. Hannon, 2006: Evaluation of pulsed lidar wind hazard detection at Las Vegas International Airport. Proc. 12th Conference on Aviation, Range, and Aerospace Meteorology, Amer. Meteor. Soc, Atlanta, USA, P5.4.

    Google Scholar 

  • Kessler, E., 1985: Wind shear and aviation safety. Nature, 315, 179–180, doi: 10.1038/315179a0.

    Article  Google Scholar 

  • Lee, Y. F., and P. W. Chan, 2014: LIDAR-based F-factor for wind shear alerting: Different smoothing algorithms and application to departing flights. Meteor. Appl, 21, 86–93, doi: 10.1002/met.1434.

    Article  Google Scholar 

  • Matayoshi, N., T. Iijima, K. Yamamoto, et al., 2016: Development of Airport Low-level Wind Information (ALWIN). Proc. 16th AIAA Aviation Technology, Integration, and Operations Conference, AIAA, Washington, D.C., AIAA 2016-4362, doi: 10.2514/6.2016-4362.

    Google Scholar 

  • Merritt, M. W., D. L. Klingle-Wilson, and S. D. Campbell, 1989: Wind shear detection with pencil-beam radars. Lncoln Laboratory Journal, 2, 483–510.

    Google Scholar 

  • Shun, C. M., and S. Y. Lau, 2002: Implementation of a Doppler light detection and ranging (LIDAR) system for the Hong Kong International Airport. Proc. 13th Conference on Applied Climatology and 10th Conference on Aviation, Range, and Aerospace Meteorology, Amer. Meteor. Soc, Portland, USA, 8.3.

    Google Scholar 

  • Shun, C. M., and P. W. Chan, 2008: Applications of an infrared Doppler lidar in detection of wind shear. J. Atmos. Oceanic Technol, 25, 637–655, doi: 10.1175/2007JTECHA1057.1.

    Article  Google Scholar 

  • Stumpf, G. J., A. Witt, E. D. Mitchell, et al, 1998: The National Severe Storms Laboratory mesocyclone detection algorithm for the WSR-88D. Wea. Forecasting, 13, 304–326, doi: 10.1175/1520-0434(1998)013<0304:TNSSLM>2.0.CO;2.

    Article  Google Scholar 

  • Thobois, L., J. P. Cariou, and I. Gultepe, 2019: Review of lidar-based applications for aviation weather. Pure Appl. Geophys., 176, 1959–1976, doi: 10.1007/s00024-018-2058-8.

    Article  Google Scholar 

  • Uyeda, H., and D. S. Zrnic, 1986: Automatic detection of gust fronts. J. Atmos. Oceanic Technol, 3, 36–50, doi: 10.1175/ 1520-0426(1986)003<0036:ADOGF>2.0.CO;2.

    Article  Google Scholar 

  • Wilson, F. W., 1993: Wind Shear Alert System. United States Patent, Patent No. 5221924, 1–38.

    Google Scholar 

  • Witt, A., S. D. Smith, M. D. Eilts, et al., 1989: Gust Front/Wind Shift Detection Algorithm for the Terminal Doppler Weather Radar. Federal Aviation Administration Report No. DOT/ FAA/NR-91/4, National Severe Storms Laboratory, Norman, Oklahoma, USA, 76 pp.

    Google Scholar 

  • Zhang, H. W., S. H. Wu, Q. C. Wang, et al., 2019: Airport low-level wind shear lidar observation at Beijing Capital International Airport. Infrared Phys. Technol, 96, 113–122, doi: 10.1016/j.infrared.2018.07.033.

    Google Scholar 

  • Zrnić, D. S., D. W. Burgess, and L. D. Hennington, 1985: Automatic detection of mesocyclonic shear with Doppler radar. J. Atmos. Oceanic Technol., 2, 425–438,: doi 10.1175/1520-0426(1985)002<0425:ADOMSW>2.0.CO;2.

    Article  Google Scholar 

Download references

Acknowledgments

The lidar data used in this work were provided by Gansu Sub-Bureau of Northwest Air Traffic Management Bureau of Civil Aviation of China. The NCEP FNL data were downloaded from https://rda.ucar.edu/datasets/ds083.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aimei Shao.

Additional information

Supported by the National Natural Science Foundation of China (41275102), Science and Technology Project of the Northwest Air Traffic Management Bureau of Civil Aviation of China in 2017, and Special Fund for National Science and Technology Basic Research Program of China (2017FY100900).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Shao, A., Zhang, K. et al. Low-Level Wind Shear Characteristics and Lidar-Based Alerting at Lanzhou Zhongchuan International Airport, China. J Meteorol Res 34, 633–645 (2020). https://doi.org/10.1007/s13351-020-9134-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-020-9134-6

Keywords

Navigation