Skip to main content
Log in

A Possible Mechanism for Winter Sea Ice Decline over the Bering Sea and Its Relationship with Cold Events over North America

  • Regular Article
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

In this study, the mechanism for the sea ice decline over the Bering Sea and its relationship with cold events over North America are investigated based on the daily ERA-Interim data during the winter (December-February) of 1979-2016. The results show that the sea ice decline over western (eastern) Bering Sea is mainly contributed by (1) the strengthened southerly (southeasterly) wind near the surface, which possibly pushes the sea ice to move northward, and (2) the intensified downward infrared radiation (IR), which is closely related to the local increasing surface air temperature (SAT) and the intensified moisture convergence mostly induced by the anomalous southeasterly wind associated with an anticyclonic anomaly over the Alaska Bay. During the sea ice decline over the Bering Sea, a cold SAT anomaly is simultaneously found over North America. It is proved that the occurrence of such a cold event is driven by the atmospheric internal variation, but not the forcing of sea ice decline over the Bering Sea. This study deepens our understanding of sea ice decline and its relationship with contemporary cold events in winter.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blackport, R., J. A. Screen, K. van der Wiel, et al., 2019: Minimal influence of reduced Arctic sea ice on coincident cold winters in mid-latitudes. Nat. Climate Change, 9, 697–704, doi: 10.1038/s41558-019-0551-4.

    Article  Google Scholar 

  • Cornwall, W., 2019: Vanishing Bering sea ice poses climate puzzle. Science, 364, 616–617, doi: 10.1126/science.364. 6441.616.

    Article  Google Scholar 

  • Dammann, D. O., U. S. Bhatt, P. L. Langen, et al., 2013: Impact of daily Arctic sea ice variability in CAM3.0 during fall and winter. J. Climate, 26, 1939–1955, doi: 10.1175/jcli-d-11-00710.1.

    Article  Google Scholar 

  • Dee, D. P., S. M. Uppala, A. J. Simmons, et al., 2011: The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Quart. J. Roy. Meteor. Soc., 137, 553–597, doi: 10.1002/qj.828.

    Article  Google Scholar 

  • Deser, C., J. E. Walsh, and M. S. Timlin, 2000: Arctic sea ice variability in the context of recent atmospheric circulation trends. J. Climate, 13, 617–633, doi: 10.1175/1520-0442(2000)013 <0617:ASIVIT>2.0.CO;2.

    Article  Google Scholar 

  • Fang, Z. F., and J. M. Wallace, 1994: Arctic sea ice variability on a timescale of weeks and its relation to atmospheric forcing. J. Climate, 7, 1897–1914, doi: 10.1175/1520-0442(1994)007 <1897:ASIVOA>2.0.CO;2.

    Article  Google Scholar 

  • Francis, J. A., and E. Hunter, 2007: Drivers of declining sea ice in the Arctic winter: A tale of two seas. Geophys. Res. Lett., 34, L17503, doi: 10.1029/2007GL030995.

    Article  Google Scholar 

  • Kug, J. S., J. H. Jeong, Y. S. Jang, et al., 2015: Two distinct influences of Arctic warming on cold winters over North America and East Asia. Nat. Geosci., 8, 759–762, doi: 10.1038/ NGE02517.

    Article  Google Scholar 

  • Luo, B. H., and Y. Yao, 2018: Recent rapid decline of the Arctic winter sea ice in the Barents-Kara seas owing to combined effects of the Ural blocking and SST. J. Meteor. Res., 32, 191–202, doi: 10.1007/s13351-018-7104-z.

    Article  Google Scholar 

  • Luo, B. H., D. H. Luo, L. X. Wu, et al., 2017: Atmospheric circulation patterns which promote winter Arctic sea ice decline. Environ. Res. Lett., 12, 054017, doi: 10.1088/1748-9326/ aa69d0.

    Article  Google Scholar 

  • McCusker, K. E., J. C. Fyfe, and M. Sigmond, 2016: Twenty-five winters of unexpected Eurasian cooling unlikely due to Arctic sea-ice loss. Nat. Geosci., 9, 838–842, doi: 10.1038/ NGEO2820.

    Article  Google Scholar 

  • Mori, M., M. Watanabe, H. Shiogama, et al., 2014: Robust Arctic sea-ice influence on the frequent Eurasian cold winters in past decades. Nat. Geosci., 7, 869–873, doi: 10.1038/ngeo2277.

    Article  Google Scholar 

  • Overland, J. E., K. R. Wood, and M. Y. Wang, 2011: Warm Arctic-cold continents: Climate impacts of the newly open Arctic Sea. PolarRes., 30, 15787, doi: 10.3402/polar.v30i0.15787.

    Article  Google Scholar 

  • Park, D.-S. R., S. Lee, and S. B. Feldstein, 2015: Attribution of the recent winter sea ice decline over the Atlantic sector of the Arctic Ocean. J. Climate, 28, 4027–4033, doi: 10.1175/jcli-d-15-0042.1.

    Article  Google Scholar 

  • Park, H.-S., S. Lee, S.-W. Son, et al., 2015: The Impact of poleward moisture and sensible heat flux on Arctic winter sea ice variability. J. Climate, 28, 5030–5040, doi: 10.1175/JCLI-D-15-0074.1.

    Article  Google Scholar 

  • Petoukhov, V., and V. A. Semenov, 2010: A link between reduced Barents-Kara sea ice and cold winter extremes over northern continents. J. Geophys. Res. Atmos., 115, D21111, doi: 10.1029/2009JD013568.

    Article  Google Scholar 

  • Sasaki, Y. N., and S. Minobe, 2005: Seasonally dependent interan-nual variability of sea ice in the Bering Sea and its relation to atmospheric fluctuations. J. Geophys. Res. Oceans, 110, C05011, doi: 10.1029/2004JC002486.

    Google Scholar 

  • Screen, J. A., 2017: Simulated atmospheric response to regional and pan-Arctic sea ice loss. J. Climate, 30, 3945–3962, doi: 10.1175/JCLI-D-16-0197.1.

    Article  Google Scholar 

  • Screen, J. A., and I. Simmonds, 2010: The central role of diminishing sea ice in recent Arctic temperature amplification. Nature, 464, 1334–1337, doi: 10.1038/nature09051.

    Article  Google Scholar 

  • Serreze, M. C., A. P. Barrett, and J. J. Cassano, 2011: Circulation and surface controls on the lower tropospheric air temperature field of the Arctic. J. Geophys. Res. Atmos., 116, D07104, doi: 10.1029/2010JD015127.

    Article  Google Scholar 

  • Sorteberg, A., and B. Kvingedal, 2006: Atmospheric forcing on the Barents Sea winter ice extent. J. Climate, 19, 4772–4784, doi: 10.1175/JCLI3885.1.

    Article  Google Scholar 

  • Tachibana, Y., K. K. Komatsu, V. A. Alexeev, et al., 2019: Warm hole in Pacific Arctic sea ice cover forced mid-latitude Northern Hemisphere cooling during winter 2017-18. Sci. Rep., 9, 5567, doi: 10.1038/s41598-019-41682-4.

    Article  Google Scholar 

  • Vaughan, D. G., J. C. Comiso, I. Allison, et al., 2013: Observations of the cryosphere. Climate Change 2013: The Physical Science Basis, T. F. Stacker, D. Qin, G.-K. Plattner, et al., Eds., Cambridge University Press, Cambridge, United Kingdom and New York, 319 pp.

    Google Scholar 

  • Wei, T., J. Li, X. Y. Rong, et al., 2018: Arctic climate changes based on historical simulations (1900-2013) with the CAMS-CSM. J. Meteor. Res., 32, 881–895, doi: 10.1007/sl3351-018-7188-5.

    Article  Google Scholar 

  • Wu, B., K. Yang, and J. A. Francis, 2017: A cold event in Asia during January-February 2012 and its possible association with Arctic sea ice loss. J. Climate, 60, 7971–7990, doi: 10. 1175/jcli-d-16-0115.1.

    Article  Google Scholar 

  • Wu, Z. K., and X. D. Wang, 2018: Variability of Arctic sea ice (1979-2016). Water, 11, 23, doi: 10.3390/w11010023.

    Article  Google Scholar 

  • Yang, S. T., and J. H. Christensen, 2012: Arctic sea ice reduction and European cold winters in CMIP5 climate change experiments. Geophys. Res. Lett., 39, L20707, doi: 10.1029/ 2012GL053338.

    Google Scholar 

  • Yao, Y., D. H. Luo, and L. H. Zhong, 2018: Effects of Northern Hemisphere atmospheric blocking on Arctic sea ice decline in winter at weekly time scales. Atmosphere, 9, 331, doi: 10.3390/atmos9090331.

    Article  Google Scholar 

  • Yu, B., and X. B. Zhang, 2015: A physical analysis of the severe 2013/2014 cold winter in North America. J. Geophys. Res. Atmos., 120, 10149–10165, doi: 10.1002/2015JD023116.

    Google Scholar 

  • Zhang, J. L., R. Woodgate, and R. Moritz, 2010: Sea ice response to atmospheric and oceanic forcing in the Bering Sea. J. Phys. Oceanogr., 40, 1729–1747, doi: 10.1175/2010JPO4323.1.

    Article  Google Scholar 

  • Zhang, L., and T. Li, 2017: Physical processes responsible for the interannual variability of sea ice concentration in Arctic in boreal autumn since 1979. J. Meteor. Res., 31, 468–475, doi: 10.1007/sl3351-017-6105-7.

    Article  Google Scholar 

  • Zhong, L. H., L. J. Hua, and D. H. Luo, 2018: Local and external moisture sources for the Arctic warming over the Barents-Kara Seas. J. Climate, 31, 1963–1982, doi: 10.1175/JCLI-D-17-0203.1.

    Article  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the ECMWF for providing the ERA-Interim reanalysis data (available at http://apps.ecmwf.int/datasets/data/interim-full-daily).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhina Jiang.

Additional information

Supported by the National Natural Science Foundation of China (41775001) and Technology Development Fund of the Chinese Academy of Meteorological Sciences (2018KJ036).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhuo, W., Jiang, Z. A Possible Mechanism for Winter Sea Ice Decline over the Bering Sea and Its Relationship with Cold Events over North America. J Meteorol Res 34, 575–585 (2020). https://doi.org/10.1007/s13351-020-9154-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-020-9154-2

Keywords

Navigation