Skip to main content
Log in

Estimation of Gridded Atmospheric Oxygen Consumption from 1975 to 2018

  • Regular Article
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

Atmospheric Oxygen (O2) is one of the dominating features that allow the earth to be a habitable planet with advanced civilization and diverse biology. However, since the late 1980s, observational data have indicated a steady decline in O2 content on the scale of parts-per-million level. The current scientific consensus is that the decline is caused by the fossil-fuel combustion; however, few works have been done to quantitatively evaluate the response of O2 cycle under the anthropogenic impact, at both the global and regional scales. This paper manages to quantify the land O2 flux and makes the initial step to quantificationally describe the anthropogenic impacts on the global O2 budget. Our estimation reveals that the global O2 consumption has experienced an increase from 33.69 ± 1.11 to 47.63 ± 0.80 Gt (gigaton, 109 t) O2 yr−1 between 2000 and 2018, while the land production of O2 (totaling 11.34 ± 13.48 Gt O2 yr−1 averaged over the same period) increased only slightly. In 2018, the combustion of fossil-fuel and industrial activities (38.45 ± 0.61 Gt O2 yr−1) contributed the most to consumption, followed by wildfires (4.97 ± 0.48 Gt O2 yr−1) as well as livestock and human respiration processes (2.48 ± 0.16 and 1.73 ± 0.13 Gt O2 yr−1, respectively). Burning of fossil-fuel that causes large O2 fluxes occurs in East Asia, India, North America, and Europe, while wildfires that cause large fluxes in comparable magnitude are mainly distributed in central Africa.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andres, R. J., T. A. Boden, and G. Marland, 2016: Annual fossilfuel CO2 emissions: Mass of emissions gridded by one degree latitude by one degree longitude. ORNL/CDIAC-97, NDP-058, Carbon Dioxide Information Analysis Center, Oak Ridge National Laboratory, U.S. Department of Energy, Oak Ridge, Tenn, 56 pp, doi: 10.3334/CDIAC/ffe.ndp058.2016.

    Google Scholar 

  • Battle, M., M. Bender, T. Sowers, et al., 1996: Atmospheric gas concentrations over the past century measured in air from firn at the South Pole. Nature, 383, 231–235, doi: 10.1038/383231a0.

    Google Scholar 

  • Bender, M. L., T. Sowers, J. M. Barnola, et al, 1994a: Changes in the O2/N2 ratio of the atmosphere during recent decades reflected in the composition of air in the firn at Vostok Station, Antarctica. Geophys. Res. Lett., 21, 189–192, doi: 10.1029/93GL03548.

    Google Scholar 

  • Bender, M. L., T. Sowers, and L. Labeyrie, 1994b: The Dole Effect and its variations during the last 130,000 years as measured in the Vostok Ice Core. Global Biogeochem. Cycles, 8, 363–376, doi: 10.1029/94GB00724.

    Google Scholar 

  • Bender, M. L., D. T. Ho, M. B. Hendricks, et al., 2005: Atmospheric O2/N2 changes, 1993-2002: Implications for the partitioning of fossil fuel CO2 sequestration. Global Biogeochem. Cycles, 19, GB4017, doi: 10.1029/2004GB002410.

  • Bopp, L., C. Le Quéré, M. Heimann, et al., 2002: Climate-induced oceanic oxygen fluxes: Implications for the contemporary carbon budget. Global Biogeochem. Cycles, 16, 6–1, doi: 10.1029/2001GB001445.

    Google Scholar 

  • Cai, Q. X., X. D. Yan, Y. F. Li, et al., 2018: Global patterns of human and livestock respiration. Sci. Rep., 8, 9278, doi: 10.1038/s41598-018-27631-7.

  • Chen, S. Y., J. P. Huang, Y. Qian, et al., 2017: An overview of mineral dust modeling over East Asia. J. Meteor. Res., 31, 633–653, doi: 10.1007/s13351-017-6142-2.

    Google Scholar 

  • Dintenfass, L., D. G. Julian, and G. V. F. Seaman, 1983: Heart Perfusion, Energetics, and Ischemia. Springer, Boston, MA, 663 pp, doi: 10.1007/978-1-4757-0393-1.

    Google Scholar 

  • Frape, D., 2004: Equine Nutrition and Feeding (Third Edition). Blackwell Pub, Oxford, UK, 192–194.

    Google Scholar 

  • Gidden, M. J., K. Riahi, S. J. Smith, et al., 2019: Global emissions pathways under different socioeconomic scenarios for use in CMIP6: A dataset of harmonized emissions trajectories through the end of the century. Geosci. Model Dev., 12, 1443–1475, doi: 10.5194/gmd-12-1443-2019.

    Google Scholar 

  • Gilbert, M., G. Nicolas, G. Cinardi, et al., 2018: Global distribution data for cattle, buffaloes, horses, sheep, goats, pigs, chickens and ducks in 2010. Sci. Data, 5, 180227, doi: 10.1038/sdata.2018.227.

  • Henry, C. J. K., 2005: Basal metabolic rate studies in humans: Measurement and development of new equations. Public Health Nutr., 8, 1133–1152, doi: 10.1079/PHN2005801.

    Google Scholar 

  • Huang, J. G., Y. Bergeron, B. Denneler, et al., 2007: Response of forest trees to increased atmospheric CO2. Crit. Rev. Plant Sci., 26, 265–283, doi: 10.1080/07352680701626978.

    Google Scholar 

  • Huang, J. P., J. P. Huang, X. Y. Liu, et al., 2018: The global oxygen budget and its future projection. Sci. Bull., 36, 1180–1186, doi: 10.1016/j.scib.2018.07.023.

    Google Scholar 

  • IPCC, 2006: 2006 IPCC Guidelines for National Greenhouse Gas Inventories, Chapter 3, National Greenhouse Gas Inventory Programme, Institute for Global Environmental Strategies, Hayama, Japan, 10–106.

    Google Scholar 

  • IPCC, 2014: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, New York. 121–140.

    Google Scholar 

  • Ishidoya, S., S. Aoki, D. Goto, et al., 2012: Time and space variations of the O2/N2 ratio in the troposphere over Japan and estimation of the global CO2 budget for the period 2000-2010. Tellus B., 64, 18964, doi: 10.3402/tellusb.v64i0.18964.

    Google Scholar 

  • Janssens-Maenhout, G., M. Crippa, D. Guizzardi, et al., 2019: EDGAR v4.3.2 global atlas of the three major greenhouse gas emissions for the period 1970-2012. Earth Syst. Sci. Data, 11, 959–1002, doi: 10.5194/essd-11-959-2019.

    Google Scholar 

  • Jones, H., 2003: Design Rules for Space Life Support Systems. SAE Technical Paper 2003-01-2356, doi: 10.4271/2003-01-2356.

    Google Scholar 

  • Keeling, R. F., 1988: Development of an interferometric oxygen analyzer for precise measurement of the atmospheric O2 mole fraction. PhD dissertation, Harvard University, Cambridge, 57–59.

    Google Scholar 

  • Keeling, R. F., 2019: Atmospheric Oxygen Data for Alert, Cold Bay, Cape Kumukahi, La Jolla Pier, Mauna Loa Observatory, American Samoa, Cape Grim, Palmer Station and South Pole. [Available online at http://scrippso2.ucsd.edu/osub2sub-data].

    Google Scholar 

  • Keeling, R. F., and A. C. Manning, 2014: Studies of recent changes in atmospheric O2 content. Treatise on Geochemistry. 2nd ed, H. D. Holland, and K. K. Turekian, Eds., Elsevier Ltd., Amsterdam, 385–405, doi: 10.1016/B978-0-08-095975-7.00420-4.

    Google Scholar 

  • Keeling, R. F., A. Körtzinger, and N. Gruber, 2010: Ocean deoxygenation in a warming world. Annu. Rev. Mar. Sci., 2, 199–229, doi: 10.1146/annurev.marine.010908.163855.

    Google Scholar 

  • Kleiber, M., 1932: Body size and metabolism. Hilgardia, 6, 315–353, doi: 10.3733/hilg.v06n11p315.

    Google Scholar 

  • Le Quéré, C., R. M. Andrew, P. Friedlingstein, et al., 2018: Global carbon budget 2018. Earth Syst. Sci. Data, 10, 2141–2194, doi: 10.5194/essd-10-2141-2018.

    Google Scholar 

  • Li, Y. C., Y. F. Xu, M. Chu, et al., 2012: Influences of climate change on the uptake and storage of anthropogenic CO2 in the global ocean. J. Meteor. Res., 26, 304–317, doi: 10.1007/s13 351-012-0304-z.

    Google Scholar 

  • Liu, X. Y., J. P. Huang, J. P. Huang, et al., 2019: Anthropogenic oxygen flux from 1975 to 2012, link to NetCDF files. PANGAEA, doi: 10.1594/PANGAEA.899167.

    Google Scholar 

  • Liu, Z., D. B. Guan, W. Wei, et al., 2015: Reduced carbon emission estimates from fossil fuel combustion and cement production in China. Nature, 524, 335–338, doi: 10.1038/nature 14677.

    Google Scholar 

  • Luyssaert, S., I. Inglima, M. Jung, et al., 2007: CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biol., 13, 2509–2537, doi: 10.1111/j.1365-2486.2007.01439.x.

    Google Scholar 

  • Martin, D., H. McKenna, and V. Livina, 2017: The human physiological impact of global deoxygenation. J. Physiol. Sci., 67, 97–106, doi: 10.1007/s12576-016-0501-0.

    Google Scholar 

  • Murakami, D., and Y. Yamagata., 2019: Estimation of gridded population and GDP scenarios with spatially explicit statistical downscaling. Sustainability, 11, 2106, doi: 10.3390/su 11072106.

    Google Scholar 

  • Peters, W., A. R. Jacobson, C. Sweeney, et al., 2007: An atmospheric perspective on North American carbon dioxide exchange: CarbonTracker. Proc. Natl. Acad. Sci. USA, 104, 18,925-18,930, doi: 10.1073/pnas.0708986104.

    Google Scholar 

  • Petsch, S. T., 2014: The global oxygen cycle. Treatise on Geochemistry. 2nd ed, H. D. Holland, and K. K. Turekian, Eds., Elsevier Ltd., Amsterdam, 437–473, doi: 10.1016/B978-0-08-095975-7.00811-1.

    Google Scholar 

  • Plattner, G. K., F. Joos, and T. F. Stocker, 2002: Revision of the global carbon budget due to changing air-sea oxygen fluxes. Global Biogeochem. Cycles, 16, 1096, doi: 10.1029/2001gb 001746.

    Google Scholar 

  • Royer, D. L., 2014: Atmospheric CO2 and O2 during the phanerozoic: Tools, patterns, and impacts. Treatise on Geochemistry. 2nd ed, H. D. Holland, and K. K. Turekian, Eds., Elsevier Ltd., Amsterdam, 251–267, doi: 10.1016/B978-0-08-095975-7.01311-5.

    Google Scholar 

  • Shi, P. J., Y. Q. Chen, A. Y. Zhang, et al., 2019: Factors contribution to oxygen concentration in Qinghai-Tibetan Plateau. Chinese Sci. Bull., 64, 715–724, doi: 10.1360/n972018-00655.

    Google Scholar 

  • Steinbach, J., C. Gerbig, C. Rödenbeck, et al., 2011: The CO2 release and oxygen uptake from fossil fuel emission estimate (COFFEE) dataset: Effects from varying oxidative ratios. Atmos. Chem. Phys., 11, 6855–6770, doi: 10.5194/acp-11-6855-2011.

    Google Scholar 

  • Stolper, D. A., M. L. Bender, G. B. Dreyfus, et al., 2016: A Pleistocene ice core record of atmospheric O2 concentrations. Science, 353, 1427–1430, doi: 10.1126/science.aaf5445.

    Google Scholar 

  • Tilman, D., J. Hill, and C. Lehman, 2006: Carbon-negative biofuels from low-input high-diversity grassland biomass. Science, 314, 1598–1600, doi: 10.1126/science.1133306.

    Google Scholar 

  • Tohjima, Y., H. Mukai, Y. Nojiri, et al., 2008: Atmospheric O2/N2 measurements at two Japanese sites: Estimation of global oceanic and land biotic carbon sinks and analysis of the variations in atmospheric potential oxygen (APO). Tellus B., 60, 213–225, doi: 10.1111/j.1600-0889.2007.00334.x.

    Google Scholar 

  • United Nations, Department of Economic and Social Affairs, Population Division, 2019: World Population Prospects 2019. Department of Economic and Social Affairs Population Division, New York, 374 pp.

    Google Scholar 

  • Valentino, F. L., M. Leuenberger, C. Uglietti, et al., 2008: Measurements and trend analysis of O2, CO2 and δ13 C of CO2 from the high altitude research station Junfgraujoch, Switzerland— A comparison with the observations from the remote site Puy de Dôme, France. Sci. Total Environ., 391, 203–210, doi: 10.1016/j.scitotenv.2007.10.009.

    Google Scholar 

  • van der Werf, G. R., J. T. Randerson, L. Giglio, et al., 2017: Global fire emissions estimates during 1997-2016. Earth Syst. Sci. Data, 9, 697–720, doi: 10.5194/essd-9-697-2017.

    Google Scholar 

  • Walpole, S. C., D. Prieto-Merino, P. Edwards, et al., 2012: The weight of nations: An estimation of adult human biomass. BMC Public Health, 12, 439, doi: 10.1186/1471-2458-12-439.

    Google Scholar 

  • Wang, R., S. Tao, P. Ciais, et al., 2013: High-resolution mapping of combustion processes and implications for CO2 emissions. Atmos. Chem. Phys., 13, 5189–5203, doi: 10.5194/acp-13-5189-2013.

    Google Scholar 

  • Zhai, P. M., B. Q. Zhou, and Y. Chen, 2018: A review of climate change attribution studies. J. Meteor. Res., 32, 671–692, doi: 10.1007/s13351-018-8041-6.

    Google Scholar 

Download references

Acknowledgments

We thank Julia Steinbach from Stockholm University and Christoph Gerbig from Max Planck Institute for Biogeochemistry for providing the CO2 release and oxygen uptake from fossil fuel emission estimate (COFFEE) dataset. We thank Shixue Li from Hokkaido University for his valuable suggestions on this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianping Huang.

Additional information

Supported by the National Natural Science Foundation of China (41521004) and China 111 Project (B13045).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, X., Huang, J., Huang, J. et al. Estimation of Gridded Atmospheric Oxygen Consumption from 1975 to 2018. J Meteorol Res 34, 646–658 (2020). https://doi.org/10.1007/s13351-020-9133-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-020-9133-7

Keywords

Navigation