Skip to main content
Log in

Evaluation of the Relationship between Blocking Patterns and Duration of Spring Frost Waves: The Case of Iran

  • Regular Article
  • Published:
Journal of Meteorological Research Aims and scope Submit manuscript

Abstract

In order to evaluate the effects of blocking patterns on the duration of frost waves across Iran, the minimum daily temperatures of 60 weather stations were collected from 20 March 1968 to 21 June 2014. The findings, which were obtained based on the distribution tables of reported temperatures and their frequency variation graphs, resulted in identifying 114 frost waves. We obtained the daily weather maps at 500 hPa from NCEP/NCAR during the peak days of durable frosts, and it was revealed that the formation of low pressures over 20°-70°E and the dominant southwest-northeast troughs at 500 hPa facilitated the influx of cold air from both eastern Europe and central Siberia toward Iran, leading to the average frost duration of 12.4 days. Furthermore, low-pressure centers appeared in a dipole pattern in northern Iran over Caspian Sea and created durable frosts with an average duration of 15.4 days. The effect of omega shaped pattern of the geopotential height on durable frosts demonstrated a sharp difference with two recent patterns leading to the frost occurrence with a 13.3-day duration averagely. Additionally, the slow speed of cold western currents in the rex type of blocking from 30° to 50°N caused durable frosts of 14.3 days. Also, we found a specific reduction in the frequency of blocking patterns, which has occurred in the past four decades. Mostly, the blocking and non-blocking patterns cause long- and short-duration frosts over Iran, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andrei, S., and I. Roman, 2012: Severe weather phenomena in southern Romania in association with blocking circulation over Euro-Atlantic area during the cold season. Rom. Rep. Phys., 64, 246–262.

    Google Scholar 

  • Antokhina, O. Y., P. N. Antokhin, E. V. Devyatova, et al., 2018: 2004-2016 wintertime atmospheric blocking events over western Siberia and their effect on surface temperature anomalies. Atmosphere, 9, 72, doi: 10.3390/atmos9020072.

    Google Scholar 

  • Azizi, G., T. Akbari, M. Davudi, et al., 2008: A synoptic analysis of January 2008 severe cold in Iran. Phys. Geogr. Res. Quart., 41, 316942. (in Persian)

    Google Scholar 

  • Azizi, G., M. Miri, and M. Rahimi, 2015: Identification of synoptic patterns influencing formation of temperature anomalies in Iran and Europe. Phys. Geogr. Res. Quart., 47, 91–104, doi: 10.22059/jphgr.2015.53680. (in Persian)

    Google Scholar 

  • Barati, G. H., and M. Abrifam, 2007: Kermashah Province and precipitable air masses. Proc. Conference on Water Resources of Kermanshah Region, Kermanshah, 16 December, Ministry of Energy-Kermanshah Regional Water Authority, 268–279. (in Persian)

    Google Scholar 

  • Barati, G. H., B. Alijani, and A. Moradian, 2012: Mid-tropospheric trough and severe frosts in Iran. J. Nat. Environ. Hazards, 1, 63–78, doi: 10.22111/jneh.2013.2456. (in Persian)

    Google Scholar 

  • Barriopedro, D., R. García-Herrera, A. R. Lupo, et al., 2006: A climatology of Northern Hemisphere blocking. J. Climate, 19, 1042–1063, doi: 10.1175/JCLI3678.1.

    Google Scholar 

  • Berrisford, P., B. J. Hoskins, and E. Tyrlis, 2007: Blocking and Rossby wave breaking on the dynamical tropopause in the Southern Hemisphere. J. Atmos. Sci., 64, 2881–2898, doi: 10.1175/JAS3984.1.

    Google Scholar 

  • Cohen, J., J. A. Screen, J. C. Furtado, et al., 2014: Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci., 7, 627–637, doi: 10.1038/NGEO2234.

    Google Scholar 

  • Croci-Maspoli, M., C. Schwierz, and H. C. Davies, 2007: A multifaceted climatology of atmospheric blocking and its recent linear trend. J. Climate, 20, 633–649, doi: 10.1175/JCLI 4029.1.

    Google Scholar 

  • Darand, M., and S. A. Masoudian, 2015: Analysis and recognition of thickness anomaly patterns during extreme cold days in Iran. Geogr. Res., 30, 105–120. (in Persian)

    Google Scholar 

  • Davini, P., C. Cagnazzo, P. G. Fogli, et al., 2014: European blocking and Atlantic jet stream variability in the NCEP/NCAR reanalysis and the CMCC-CMS climate model. Climate Dyn., 43, 71–85, doi: 10.1007/s00382-013-1873-y.

    Google Scholar 

  • Fatahi, E., and T. Salehi-Pak, 2009: A synoptic patterns analysis of winter freezing in Iran. Geogr. Dev., 13, 127–136, doi: 10.22111/gdij.2009.1232. (in Persian)

    Google Scholar 

  • Ghavidel, Y., M. Farajzadeh, and S. Motalebzad, 2016: Statistical and synoptic analysis of cold waves in North West of Iran. Res. Geog. Sci., 16, 29–46. (in Persian)

    Google Scholar 

  • Hong, C. C., and T. Li, 2009: The extreme cold anomaly over Southeast Asia in February 2008: Roles of ISO and ENSO. J. Climate, 22, 3786–3801, doi: 10.1175/2009JCLI2864.1.

    Google Scholar 

  • Hozhbarpour, P. G., and B. Alijani, 2007: Frost synoptic analysing of Ardabil Province. Geogr. Dev., 10, 89–106. (in Persian)

    Google Scholar 

  • Huang, F., X. Y. Tang, S. Y. Lou, et al., 2007: Evolution of dipole-type blocking life cycles: Analytical diagnoses and observations. J. Atmos. Sci., 64, 52–73, doi: 10.1175/JAS 3819.1.

    Google Scholar 

  • Katsafados, P., A. Papadopoulos, G. Varlas, et al., 2014: Seasonal predictability of the 2010 Russian heat wave. Nat. Hazards Earth Syst. Sci., 14, 1531–1542, doi: 10.5194/nhess-14-1531- 2014.

    Google Scholar 

  • Khosravi, M., N. Safarzaie, and M. Armesh, 2015: Synoptic analysis of winter frosts in Sistan region (Case study: The Frost January 2008). J. Geogr. Plan., 19, 113–140. (in Persian)

    Google Scholar 

  • Kim, J. A., and H. R. Byun, 2016: Spatiotemporal variability of the latest frosts in Korean Peninsula and causes of atmospheric circulation. Meteor. Atmos. Phys., 128, 663–675, doi: 10.1007/s00703-016-0439-z.

    Google Scholar 

  • Lashkari, H., 2008: Synoptic analysis of surrounding cold wave 2003 in Iran. Phys. Geogr. Res., 66, 1–18.

    Google Scholar 

  • Lashkari, H., and G. H. Keykhosravi, 2010: Synoptic analysis of January 8th-15th 2006 cold wave in Iran. Spat. Plan., 65, 151–177. (in Persian)

    Google Scholar 

  • Lejenäs, H., 1989: The severe winter in Europe 1941-42: The large-scale circulation, cut-off lows, and blocking. Bull. Amer. Meteor. Soc., 70, 271–281, doi: 10.1175/1520-0477 (1989)070<0271:TSWIET>2.0.CO;2.

    Google Scholar 

  • Leviäkangas, P., A. Tuominen, R. Molarius, et al., 2011: Extreme Weather Impacts on Transport Systems. VTT Working Papers 168, Technical Research Centre of Finland, Finland, 145 pp.

    Google Scholar 

  • Llasat, M. C., F. Martín, and A. Barrera, 2007: From the concept of “Kaltlufttropfen” (cold air pool) to the cut-off low. The case of September 1971 in Spain as an example of their role in heavy rainfalls. Meteor. Atmos. Phys., 96, 43–60, doi: 10.1007/s00703-006-0220-9.

    Google Scholar 

  • Masoudian, S. A., and M. Darand, 2013: Synoptic analysis of extensive and persistent frosts in Iran. Geogr. Environ. Plan. J., 50, 29–32. (in Persian)

    Google Scholar 

  • Montazeri, M., and S. Masoudian, 2011: Temperature advection patterns analysis of Iran in cold years. Phys. Geog. Res., 42, 79–94. (in Persian)

    Google Scholar 

  • Müller, A., P. Névir, L. Schielicke, et al., 2015: Applications of point vortex equilibria: Blocking events and the stability of the polar vortex. Tellus A: Dyn. Meteor. Oceanogr., 67, 29184, doi: 10.3402/tellusa.v67.29184.

    Google Scholar 

  • Nascimento, E. D. L., and T. Ambrizzi, 2002: The influence of atmospheric blocking on the Rossby wave propagation in Southern Hemisphere winter flows. J. Meteor. Soc. Japan, 80, 139–159, doi: 10.2151/jmsj.80.139.

    Google Scholar 

  • Nazari-Pour, H., and A. B. Rigi, 2016: Interaction between Scandinavian Low Pressure with Siberian-European and North West of Iran High Pressure Systems (Aggregate high pressure system) associated with frost wave event in Iran: 11 to 16 December 2003. Geogra. Terr. Spat. Arrang., 5, 103–118, doi: 10.22111/gaij.2016.2273. (in Persian)

    Google Scholar 

  • Nieto, R., L. Gimeno, L. de la Torre, et al., 2005: Climatological features of cut off low systems in the Northern Hemisphere. J. Climate, 18, 3085–3103, doi: 10.1175/JCLI3386.1.

    Google Scholar 

  • Omidvar, K., and A. Ebrahimi, 2012: The analysis of cold wave severity between 6 to 15 January 2008 in central provinces of Iran (Isfahan, Kerman and Yazd provinces). Geogr. Environ. Plan. J., 23, 81–98. (in Persian)

    Google Scholar 

  • Park, T. W., C. H. Ho, and Y. Deng, 2014: A synoptic and dynamical characterization of wave-train and blocking cold surge over East Asia. Climate Dyn., 43, 753–770, doi: 10.1007/s00382-013-1817-6.

    Google Scholar 

  • Peterson, T. C., R. R. Jr. Heim, R. Hirsch, et al., 2013: Monitoring and understanding changes in heat waves, cold waves, floods, and droughts in the United States: State of knowledge. Bull. Amer. Meteor. Soc., 94, 821–834, doi: 10.1175/BAMS-D-12-00066.1.

    Google Scholar 

  • Pezza, A. B., and T. Ambrizzi, 2005: Cold waves in South America and freezing temperatures in São Paulo: Historical background (1888-2003) and case studies of cyclone and anticyclone tracks. Rev. Bras. de Meteorol., 20, 141–158.

    Google Scholar 

  • Porebska, M., and M. Zdunek, 2013: Analysis of extreme temperature events in Central Europe related to high pressure blocking situations in 2001-2011. Meteor. Z., 22, 533–540, doi: 10.1127/0941-2948/2013/0455.

    Google Scholar 

  • Rahimi, M., S. Hajjam, A. Khalili, et al., 2007: Risk analysis of first and last frost occurrences in the Central Alborz Region, Iran. Int. J. Climatol., 27, 349–356, doi: 10.1002/joc.1405.

    Google Scholar 

  • Rousta, I., M. Doostkamian, E. Haghighi, et al., 2016: Statistical- synoptic analysis of the atmosphere thickness pattern of Iran’s pervasive frosts. Climate, 4, 41, doi: 10.3390/cli4030041.

    Google Scholar 

  • Ruddell, D., D. Hoffman, O. Ahmad, et al., 2013: Historical threshold temperatures for Phoenix (urban) and Gila Bend (desert), central Arizona, USA. Climate Res., 55, 201–215, doi: 10.3354/cr01130.

    Google Scholar 

  • Schoetter, R., J. Cattiaux, and H. Douville, 2015: Changes of western European heat wave characteristics projected by the CMIP5 ensemble. Climate Dyn., 45, 1601–1616, doi: 10. 1007/s00382-014-2434-8.

    Google Scholar 

  • Sillmann, J., M. Croci-Maspoli, M. Kallache, et al., 2011: Extreme cold winter temperatures in Europe under the influence of North Atlantic atmospheric blocking. J. Climate, 24, 5899–5913, doi: 10.1175/2011JCLI4075.1.

    Google Scholar 

  • Simmonds, I., and H. A. Rashid, 2001: An investigation of a dramatic cold outbreak over Southeast Australia. Aust. Meteor. Mag., 50, 249–261.

    Google Scholar 

  • Snyder, R. L., and J. P. de Melo-Abreu, 2005: Frost Protection: Fundamentals, Practice, and Economics. Food and Agriculture Organization of the United Nations, Rome, 181 pp.

    Google Scholar 

  • Tomczyk, A. M., K. Szyga-Pluta, and A. Majkowska, 2015: Frost periods and frost-free periods in Poland and neighbouring countries. Open Geosci., 7, 812–823, doi: 10.1515/geo-2015- 0061.

    Google Scholar 

  • Tyrlis, E., and B. J. Hoskins, 2008: Aspects of a Northern Hemisphere atmospheric blocking climatology. J. Atmos. Sci., 65, 1638–1652, doi: 10.1175/2007JAS2337.1.

    Google Scholar 

  • Woollings, T., D. Barriopedro, J. Methven, et al., 2018: Blocking and its response to climate change. Curr. Climate Change Rep., 4, 287–300, doi: 10.1007/s40641-018-0108-z.

    Google Scholar 

  • Yadav, R. K., 2016: On the relationship between Iran surface temperature and Northwest India summer monsoon rainfall. Int. J. Climatol., 36, 4425–4438, doi: 10.1002/joc.4648.

    Google Scholar 

  • Yadav, R. K., 2017: Midlatitude Rossby wave modulation of the Indian summer monsoon. Quart. J. Roy. Meteor. Soc., 143, 2260–2271, doi: 10.1002/qj.3083.

    Google Scholar 

  • Yadav, R. K., K. Rupa Kumar, and M. Rajeevan, 2009: Increasing influence of ENSO and decreasing influence of AO/NAO in the recent decades over Northwest India winter precipitation. J. Geophys. Res. Atmos., 114, D12112, doi: 10.1029/2008 JD011318.

    Google Scholar 

  • Yadav, R. K., J. H. Yoo, F. Kucharski, et al., 2010: Why is ENSO influencing Northwest India winter precipitation in recent decades? J. Climate, 23, 1979–1993, doi: 10.1175/2009JCLI 3202.1.

    Google Scholar 

  • Yadav, R. K., G. Srinivas, and J. S. Chowdary, 2018: Atlantic Niño modulation of the Indian summer monsoon through Asian jet. npj Clim. Atmos. Sci., 1, 23, doi: 10.1038/s416 12-018-0029-5.

    Google Scholar 

  • Yue, Y. J., Y. Zhou, J. A. Wang, et al., 2016: Assessing wheat frost risk with the support of GIS: An approach coupling a growing season meteorological index and a hybrid fuzzy neural network model. Sustainability, 8, 1308, doi: 10.3390/su8121308.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gholamreaza Barati.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jafari Hombari, F., Barati, G. & Moradi, M. Evaluation of the Relationship between Blocking Patterns and Duration of Spring Frost Waves: The Case of Iran. J Meteorol Res 34, 586–600 (2020). https://doi.org/10.1007/s13351-020-9140-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13351-020-9140-8

Key words

Navigation