Skip to main content
Log in

Effect of thermal deformation on microstructure and properties of TC18 titanium alloy produced by laser additive manufacturing

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Grain boundary of α phase damaged ductility of laser melting-deposited TC18 titanium alloy and grain boundary of α phases were difficult to break by nominal heat treatment. An extra thermal deformation was introduced to break the grain boundary of α phase with the improved mechanical property of TC18 titanium alloy fabricated by laser melting deposition technique. Results indicated that after thermal deformation, β grains in alloy seriously elongated. When sample was deformed at temperatures from 750 to 850 °C, α phase exhibited both rod and irregular morphologies with discontinuous distribution at grain boundary, and the subsequent heat treatment would lead to spheroidization of the α phase. However, after deformation at 900 °C, α phase transferred into β phase and the subsequent heat treatment would make continuous grain boundary of α phase reappear. The suitable hot deformation can effectively break the continuous grain boundary in laser melting-deposited TC18 alloy with respected improved ductility.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. O.M. Ivasishin, P.E. Markovsky, Y.V. Matviychuk, S.L. Semiatin, C.H. Ward, S. Fox, J. Alloy. Compd. 457 (2008) 296–309.

    Article  Google Scholar 

  2. S. Shekhar, R. Sarkar, S.K. Kar, A. Bhattacharjee, Mater. Des. 66 (2015) 596–610.

    Article  Google Scholar 

  3. S. Shuyu, L. Weijie, Rare Met. Mater. Eng. 45 (2016) 1138–1141.

    Article  Google Scholar 

  4. A.V. Gusarov, S.N. Grigoriev, M.A. Volosova, Y.A. Melnik, A. Laskin, D.V. Kotoban, A.A. Okunkova, J. Mater. Process. Technol. 261 (2018) 213–232.

    Article  Google Scholar 

  5. J. Sam, B. Franco, J. Ma, I. Karaman, A. Elwany, J.H. Mabe, Scripta Mater. 146 (2018) 164–168.

    Article  Google Scholar 

  6. C.P. Ma, Y.C. Guan, W. Zhou, Opt. Laser. Eng. 93 (2017) 171–177.

    Article  Google Scholar 

  7. S.M. Kelly, S.L. Kamper, Metall. Mater. Trans. A 35 (2004) 1861–1867.

    Article  Google Scholar 

  8. C.M. Liu, X.J. Tian, H.B. Tang, H.M. Wang, J. Alloy. Compd. 572 (2013) 17–24.

    Article  Google Scholar 

  9. C.M. Liu, H.M. Wang, X.J. Tian, D. Liu, Mater. Sci. Eng. A 604 (2014) 176–182.

    Article  Google Scholar 

  10. C.M. Liu, H.M. Wang, X.J. Tian, H.B. Tang, D. Liu, Mater. Sci. Eng. A 586 (2013) 323–329.

    Article  Google Scholar 

  11. Z.X. Li, C.M. Liu, T.Q. Xu, L. Ji, D.H. Wang, J.P. Lu, S.Y. Ma, H.L. Fan, Mater. Sci. Eng. A 742 (2019) 287–294.

    Article  Google Scholar 

  12. T. Debroy, H.L. Wei, J.S. Zuback, T. Mukherjee, J.W. Elmer, J.O. Milewski, A.M. Beese, A. Wilson-Heid, A. De, W. Zhang, Prog. Mater. Sci. 92 (2018) 112–224.

    Article  Google Scholar 

  13. S.L. Semiatin, J.F. Thomas, P. Dadras, Metall. Trans. A 14 (1983) 2363–2374.

    Article  Google Scholar 

  14. P. Li, P.P. Yao, K.M. Xue, G.Q. Gan, Key Eng. Mater. 732 (2017) 76–80.

    Article  Google Scholar 

  15. J. Donoghue, A.A. Antonysamy, F. Martina, P.A. Colegrove, S.W. Williams, P.B. Prangnell, Mater. Charact. 114 (2016) 103–114.

    Article  Google Scholar 

  16. Z.X. Zhang, S.J. Qu, A.H. Feng, J. Shen, D.L. Chen, J. Alloy. Compd. 718 (2017) 170–181.

    Article  Google Scholar 

  17. M. Jackson, N.G. Jones, D. Dye, R.J. Dashwood, Mater. Sci. Eng. A 501 (2009) 248–254.

    Article  Google Scholar 

  18. J. Luo, L.F. Wang, S.F. Liu, M.Q. Li, Mater. Sci. Eng. A 654 (2016) 213–220.

    Article  Google Scholar 

  19. M.V. Okseniuk, S.F. Gueijman, C.E. Schvezov, A.E. Ares, Procedia Mater. Sci. 1 (2012) 64–71.

    Article  Google Scholar 

  20. S.W. Lee, J.M. Oh, C.H. Park, J. Hong, J. Yeom, J. Alloy. Compd. 782 (2019) 427–432.

    Article  Google Scholar 

  21. X.J. Dong, S.Q. Lu, H.Z. Zheng, Trans. Nonferrous Met. Soc. 26 (2016) 1301–1309.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Key Research and Development Program, Ministry of Science and Technology of the People’s Republic of China (No. 2018YFB1106000) and National Natural Science Foundation of China (No. 51801009).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shu-quan Zhang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Xd., Qiu, Cy., Liu, Yt. et al. Effect of thermal deformation on microstructure and properties of TC18 titanium alloy produced by laser additive manufacturing. J. Iron Steel Res. Int. 27, 1476–1484 (2020). https://doi.org/10.1007/s42243-020-00456-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00456-3

Keywords

Navigation