Skip to main content
Log in

Prediction model for mechanical properties of hot-rolled strips by deep learning

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The prediction of the mechanical properties of hot-rolled strips is a very complex, highly dimensional and nonlinear problem, and the published models might lack reliability, practicability and generalization. Thus, a new model was proposed for predicting the mechanical properties of hot-rolled strips by deep learning. First, the one-dimensional numerical data were transformed into two-dimensional data for expressing the complex interaction between the influencing factors. Subsequently, a new convolutional network was proposed to establish the prediction model of tensile strength of hot-rolled strips, and an improved inception module was introduced into this network to abstract features from different scales. Many comparative experiments were carried out to find the optimal network structure and its hyperparameters. Finally, the prediction experiments were carried out on different models to evaluate the performance of the new convolutional network, which includes the stepwise regression, ridge regression, support vector machine, random forest, shallow neural network, Bayesian neural network, deep feed-forward network and improved LeNet-5 convolutional neural network. The results show that the proposed convolutional network has better prediction accuracy of the mechanical properties of hot-rolled strips compared with other models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. S.M. Azimi, D. Britz, M. Engstler, M. Fritz, F. Mücklich, Sci. Rep. 8 (2018) 2128.

    Article  Google Scholar 

  2. W.G. Li, W. Yang, Y.T. Zhao, G. Xu, X.H. Liu, J. Iron Steel Res. Int. 26 (2019) 230–241.

    Article  Google Scholar 

  3. W.G. Li, W. Yang, Y.T. Zhao, H.F. Hu, J. Iron Steel Res. Int. 30 (2018) 302–308.

    Google Scholar 

  4. G. Khalaj, T. Azimzadegan, M. Khoeini, M. Etaat, Neural Comput. Appl. 23 (2013) 2301–2308.

    Article  Google Scholar 

  5. X.Y. Sui, Z.M. Lv, J. Int. Adv. Manuf. 85 (2016) 1395–1403.

    Article  Google Scholar 

  6. S.W. Wu, G.M. Cao, X.G. Zhou, N.A. Shi, Z.Y. Liu, ISIJ Int. 57 (2017) 1213–1220.

    Article  Google Scholar 

  7. S.W. Wu, J.K. Ren, X.G. Zhou, G.M. Cao, Z.Y. Liu, J. Yang, Trans. Indian Inst. Met. 72 (2019) 1277-1288.

    Article  Google Scholar 

  8. S.W. Wu, Z.Y. Liu, X.G. Zhou, N.A. Shi, J. Iron Steel Res. Int. 28 (2016) 1–4.

    Google Scholar 

  9. Y.H. Zhao, Y. Weng, N.Q. Peng, G.B. Tang, Z.D. Liu, J. Iron Steel Res. Int. 20 (2013) No. 7, 9–15.

    Article  Google Scholar 

  10. A. Noroozi, M. Ayaz, N.B. Mostafa Arab, D. Mirahmadi Khaki, Metall. Res. Technol. 110 (2013) 359–371.

    Google Scholar 

  11. L. Čiripová, E. Hryha, E. Dudrová, A. Výrostková, Mater. Des. 35 (2012) 619–625.

    Article  Google Scholar 

  12. D. Šimek, A. Oswald, R. Schmidtchen, M. Motylenko, G. Lehmann, D. Rafaja, Steel Res. Int. 85 (2014) 1369–1378.

    Article  Google Scholar 

  13. A.A. dos Santos, R. Barbosa, Steel Res. Int. 81 (2010) 55–63.

    Article  Google Scholar 

  14. C.Z. Zhang, B.M. Gong, C.Y. Deng, D.P. Wang, Mater. Sci. Eng. A 685 (2017) 310–316.

    Article  Google Scholar 

  15. M. Alibeyki, H. Mirzadeh, M. Najafi, A. Kalhor, J. Mater. Eng. Perform. 26 (2017) 2683–2688.

    Article  Google Scholar 

  16. W.Y. Xie, Y.S. Li, X.P. Jia, Neurocomputing 312 (2018) 372–381.

    Article  Google Scholar 

  17. O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, Z.H. Huang, A. Karpathy, A. Khosla, M. Bernstein, A.C. Berg, F.F. Li, Int. J. Comput. Vision 115 (2015) 211-252.

    Article  MathSciNet  Google Scholar 

  18. A. Krizhevsky, I. Sutskever, G.E. Hinton, in: P. Bartlett (Eds.), NIPS. Conference and Workshop on Neural Information Processing Systems, Neural Information Processing Systems Foundation, Inc., Lake Tahoe, USA, 2012, pp. 1106–1114.

  19. T. Hu, M. Yang, W.Q. Yang, A.S. Li, Int. J. Mach. Learn. Cyb. 10 (2019) 1909–1924.

    Article  Google Scholar 

  20. M. Abadi, in: M. Abadi (Eds.), ICFP. The 21st ACM SIGPLAN International Conference on Functional Programming, Association for Computing Machinery, New York, USA, 2016.

  21. W. Yang, W.G. Li, Y.T. Zhao, B. Yan, W. Wang, Iron and Steel 53 (2018) No. 3, 44–49.

    Google Scholar 

  22. N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, R. Salakhutdinov, J. Mach. Learn Res. 15 (2014) 1929–1958.

    MathSciNet  Google Scholar 

Download references

Acknowledgements

This research is supported by National Natural Science Foundation of China (51774219).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei-gang Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Wg., Xie, L., Zhao, Yt. et al. Prediction model for mechanical properties of hot-rolled strips by deep learning. J. Iron Steel Res. Int. 27, 1045–1053 (2020). https://doi.org/10.1007/s42243-020-00450-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00450-9

Keywords

Navigation