Skip to main content
Log in

Structure characterization and grinding performance of gas-quenched steel slag abrasive

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Gas-quenched steel slag abrasive was obtained by gas quenching with high-temperature liquid steel slag as raw material. The phase composition, thermal properties, micromorphology, magnetic properties, and mechanical properties of the particles were characterized by using an X-ray diffractometer, a differential thermal analyzer, a scanning electron microscope, a magnetic property meter, and a compressive strength tester, respectively. Results show that the gas-quenched steel slag abrasive is a monodisperse regular sphere. The compressive strength of a single particle is 34 N. The product is ferromagnetic and has good thermal properties. The micromorphology and flatness of the workpiece before and after grinding with the gas-quenched steel slag abrasive were measured using a three-dimensional profilometer. Results reveal that the surface roughness of the workpiece is reduced to 1.526, 0.623, and 0.227 µm after grinding for 5, 10, and 20 min, respectively. The surface profile fluctuation decreases to ± 1.0 µm. Thus, the workpiece surface tends to be flat without obvious scratches.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. X. Wang, W. Ni, J.J. Li, S.Q. Zhang, M. Hitch, R. Pascual, Cem. Concr. Res. 125 (2019) 105893.

    Article  Google Scholar 

  2. J. Guo, Y. Bao, M. Wang, Waste Manage. 78 (2018) 318–330.

    Article  Google Scholar 

  3. H. Jo, M.G. Lee, J. Park, K.D. Jung, Energy 120 (2017) 884–894.

    Article  Google Scholar 

  4. H.D. Meng, L. Liu, Iron and Steel 45 (2010) No. 2, 28–31.

    Google Scholar 

  5. Z.H. Zhang, J.L. Liao, J.T. Ju, J. Iron Steel Res. 25 (2013) No. 7, 1–4.

    Google Scholar 

  6. F.C. Zhao, J.T. Ju, J.L. Liao, W.M. Kong, Y.J. Dang, J. Iron Steel Res. 25 (2013) No. 11, 23–28.

    Google Scholar 

  7. N. Touch, T. Hibino, S. Yamaji, H. Takata, Environmental Technol. 40 (2019) 2906–2912.

    Article  Google Scholar 

  8. J.W. Lim, L.H. Chew, T.S.Y. Choong, C. Tezara, M.H. Yazdi, IOP Conference Series: Earth and Environmental Sci. 36 (2016) 012067.

    Article  Google Scholar 

  9. Y.C. Gao, J.G. Jiang, S.C. Tian, K.M. Li, F. Yan, N. Liu, M. Yang, X.J. Chen, Sci. Rep. 7 (2017) 11177.

    Article  Google Scholar 

  10. C.L. Beh, T.G. Chuah, M.N. Nourouzi, T. Choong, J. Chem. 9 (2012) 128275.

    Google Scholar 

  11. A.M. Rashad, J. Mater. Res. Technol. 8 (2019) 4940–4955.

    Article  Google Scholar 

  12. G. Zhu, Y. Hao, C. Xia, Y. Zhang, T. Hu, S. Sun, J. Min. Metall. 49 (2013) 217–224.

    Article  Google Scholar 

  13. Y.C. Guo, J.H. Xie, J.B. Zhao, K.X. Zuo, Constr. Build. Mater. 204 (2019) 41–49.

    Article  Google Scholar 

  14. N.H. Roslan, M. Ismail, Z. Abdul-Majid, S. Ghoreishiamiri, B. Muhammad, Constr. Build. Mater. 104 (2016) 16–24.

    Article  Google Scholar 

  15. E.A. Oluwasola, M.R. Hainin, M.M.A. Aziz, H. Yaacob, M.N.M. Warid, Mater. Res. Innov. 18 (2014) S6-250–S6-254.

    Article  Google Scholar 

  16. H. Guo, S.H. Yin, Q.J. Yu, X. Yang, H.L. Huang, Y. Yang, F. Gao, Resour. Conserv. Recycl. 129 (2018) 209–218.

    Article  Google Scholar 

  17. D.S. Kumar, R. Sah, S. Sanyal, G. Prasad, Measurement 131 (2019) 156–161.

    Article  Google Scholar 

  18. Q. Wang, P.Y. Yan, Constr. Build. Mater. 24 (2010) 1134–1140.

    Article  Google Scholar 

  19. J.L. Calmon, F.A. Tristão, M. Giacometti, M. Meneguelli, M. Moratti, J.E.S.L. Teixeira, Constr. Build. Mater. 40 (2013) 1046–1053.

    Article  Google Scholar 

  20. M. Mahoutian, Y. Shao, J. Clean. Prod. 137 (2016) 1339–1346.

    Article  Google Scholar 

  21. D.Y. Wang, M.F. Jiang, C.J. Liu, Y. Min, Y.Y. Cui, J. Liu, Y.C. Zhang, Steel Res. Int. 83 (2012) 189–196.

    Article  Google Scholar 

  22. Y.P. Lan, Q.C. Liu, F. Meng, D.L. Niu, H. Zhao, J. Iron Steel Res. Int. 24 (2017) 165–170.

    Article  Google Scholar 

  23. K. Morita, M. Guo, N. Oka, N. Sano, J. Mater. Cycles Waste Manag. 4 (2002) 93–101.

    Google Scholar 

  24. B.H. Shen, G. Yang, J.H. Fu, F. Jiang, B.C. Hu, Marine Technology (2012) No. 6, 41–43.

  25. L. Rao, G.Y. Chen, C.H. Zhou, L. Zhou, Y.H. Zhang, M.C. Ma, J. Anhui Univ. Technol. (Nat. Sci.) 32 (2015) 16–21.

  26. P. Zhong, L. Zhou, L.Z. Chang, C.L. Ding, Surface Technology 43 (2014) No. 2, 49–54.

    Google Scholar 

  27. O.J. Tang, Baosteel Technology (2015) No. 5, 23–28.

  28. X.G. Huang, Principles of iron and steel metallurgy, Metallurgical Industry Press, Beijing, China, 2013.

    Google Scholar 

  29. M. Yan, X.L. Peng, Fundamentals of magnetism and magnetic materials, Zhejiang University Press, Hangzhou, China, 2006.

    Google Scholar 

Download references

Acknowledgements

This work was financially supported by Tangshan Municipal Project of Science and Technology (No. 19150201E) and Graduate Innovation Project of North China University of Science and Technology (No. 2018B22).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yu-zhu Zhang or Hong-wei Xing.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pei, Jj., Wu, Jh., Huo, Wq. et al. Structure characterization and grinding performance of gas-quenched steel slag abrasive. J. Iron Steel Res. Int. 28, 383–390 (2021). https://doi.org/10.1007/s42243-020-00443-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00443-8

Keywords

Navigation