Skip to main content

Advertisement

Log in

Effect of adhesive on laser-arc hybrid welding of aluminum alloy to high-strength steel joint

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Aluminum alloy 6061 and high-strength steel Q460 were joined by laser-arc-adhesive hybrid welding technology successfully. A Cu alloy interlayer was added between Al alloy and high-strength steel. The effect of the adhesive on laser-arc-adhesive hybrid welding of Al alloy to high-strength steel was discussed. The optical microscope, scanning electron microscope and electron probe micro-analysis were applied to observe the microstructural evolution and phase transition at Al–Fe interface of laser-arc-adhesive hybrid welded joints. The results showed the maximum tensile shear strength of the joint without adhesive was 256 MPa. After adding adhesive, the maximum tensile shear strength reached 282 MPa. The combination of the mechanical bonding and the metallurgical effect could improve the mechanical performances. The shape of the joint in Al alloy changed into a canine-like morphology. There was no porosity in welds because the molten pool of Al alloy and the special keyhole phenomenon of laser welding provided a channel for the decomposed gas to escape from fusion zone.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. J. Zhao, Z. Jiang, Prog. Mater. Sci. 94 (2018) 174–242.

    Article  Google Scholar 

  2. G. Song, T.T. Li, L. Chen, Mater. Sci. Eng. A 736 (2018) 306–315.

    Article  Google Scholar 

  3. H.Y. Lei, Y.B. Li, B.E. Carlson, Y. Guo, Weld. J. 98 (2019) 14S–27S.

    Google Scholar 

  4. J. Yang, Y. Li, H. Zhang, Trans. Nonferrous Met. Soc. China 26 (2016) 994–1002.

    Article  Google Scholar 

  5. J.Q. Long, W.H. Huang, J.W. Xiang, Q.Q. Guan, Z.W. Ma, Opt. Laser Technol. 108 (2018) 97–106.

    Article  Google Scholar 

  6. D.X. Ren, K.M. Zhao, M. Pan, Y. Chang, S. Gang, D.W. Zhao, Scripta Mater. 126 (2017) 58–62.

    Article  Google Scholar 

  7. X.J. Sun, X. Guo, Trans. Nonferrous Met. Soc. China 21 (2011) 2175–2180.

    Article  Google Scholar 

  8. H. Uzun, C.D. Donne, A. Argagnotto, T. Ghidini, C. Gambaro, Mater. Des. 26 (2005) 41–46.

    Article  Google Scholar 

  9. S.N. Mortazavi, P. Marashi, M. Pouranvari, M. Masoumi, Adv. Mater. Res. 264-265 (2011) 384–389.

    Article  Google Scholar 

  10. M.J. Torkamany, S. Tahamtan, J. Sabbaghzadeh, Mater. Des. 31 (2010) 458–465.

    Article  Google Scholar 

  11. S. Yang, J. Zhang, J. Lian, Y. Lei, Mater. Des. 49 (2013) 602–612.

    Article  Google Scholar 

  12. H.Y. Lei, Y.B. Li, B.E. Carlson, Q.L. Zhong, J. Manuf. Sci. Eng. Trans. ASME 137 (2015) 051028.

    Article  Google Scholar 

  13. D.W. Zhou, S.H. Xu, L. Peng, J.S. Liu, Int. J. Adv. Manuf. Technol. 86 (2016) 2231–2242.

    Article  Google Scholar 

  14. M. Lou, Y.B. Li, Y. Wang, B. Wang, X.M. Lai, J. Mater. Process. Technol. 214 (2014) 2119–2126.

    Article  Google Scholar 

  15. G. Meschut, O. Hahn, V. Janzen, T. Olfermann, Weld. World 58 (2014) 65–75.

    Article  Google Scholar 

  16. S.W. Mei, M. Gao, J. Yan, C. Zhang, G. Li, X.Y. Zeng, Sci. Technol. Weld. Joint 18 (2013) 293–300.

    Article  Google Scholar 

  17. H.Y. Wang, R.B. Han, Z.X. Zhang, M.L. Zhu, L.M. Liu, Mater. Manuf. Process. 34 (2019) 1671–1680.

    Article  Google Scholar 

  18. T. Sadowski, P. Golewski, M. Kneć, Compos. Struct. 112 (2014) 66–77.

    Article  Google Scholar 

  19. D.X. Ren, L.M. Liu, Y.F. Li, Int. J. Adv. Manuf. Technol. 61 (2012) 195–204.

    Article  Google Scholar 

  20. L.M. Liu, D.X. Ren, Mater. Des. 32 (2011) 3730–3735.

    Article  Google Scholar 

  21. L.M. Liu, J.B. Jiang, J. Mater. Process. Technol. 209 (2009) 2864–2870.

    Article  Google Scholar 

  22. E. Akman, Y. Erdoğan, M.O. Bora, O. Çoban, B.G. Oztoprak, A. Demir, Int. J. Adhes. Adhes. 89 (2019) 109–116.

    Article  Google Scholar 

  23. D.W. Zhou, N.N. Li, Y.L. Liu, S.H. Xu, J.S. Liu, Chin. J. Nonferrous Met. 25 (2015) 2381–2388.

    Google Scholar 

  24. H.Y. Wang, B.Q. Feng, G. Song, L.M. Liu, Mater. Manuf. Process. 33 (2018) 735–742.

    Article  Google Scholar 

  25. J.Y. Lee, S.H. Ko, D.F. Farson, C.D. Yoo, J. Phys. D Appl. Phys. 35 (2002) 1570–1576.

    Article  Google Scholar 

  26. M.H. Chen, J.N. Xu, L.J. Xin, Z.F. Zhao, S.N. Ma, Y. Zhang, Opt. Laser Eng. 93 (2017) 139–145.

    Article  Google Scholar 

  27. C.B. Li, J.P. Shi, L.M. Liu, J. Mech. Eng. 52 (2016) 41–46.

    Google Scholar 

  28. R. Fabbro, K. Chouf, J. Appl. Phys. 87 (2000) 4075–4083.

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (2018YFB1107900) and the National Natural Science Foundation of China (Grant Nos. U1764251 and 51975090).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Li-ming Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Hy., Ma, Yq. & Liu, Lm. Effect of adhesive on laser-arc hybrid welding of aluminum alloy to high-strength steel joint. J. Iron Steel Res. Int. 27, 1099–1107 (2020). https://doi.org/10.1007/s42243-020-00423-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00423-y

Keywords

Navigation