Skip to main content
Log in

Simulation and verification of core–shell MC carbide design in Fe–C–Ni–V–Ti steel

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

Thermodynamic theory was used to calculate the formation temperature and site fraction of MC carbides in Fe–C–Ni–V–Ti system. The calculation results showed the theoretical formation conditions of core–shell MC carbides. One-step and two-step heat treatment processes were used in Fe–C–Ni–V–Ti alloy to, respectively, obtain homogeneous and core–shell MC carbides, which was consistent with the thermodynamic calculation results. The transmission electron microscopy observations showed that the core–shell MC carbide obtained by the two-step heat treatment process contained homogeneous (Ti, V)C as the core and basically VC as the shell. The mechanical test results proved that compared with homogeneous MC carbides, core–shell MC carbides could improve the basic mechanical properties of the alloy because VC shell greatly increased the bonding strength and separation work of Fe/MC interface. Thus, the core–shell MC carbide with a VC shell structure can be a better grain refiner and can be used in steels with a high standard of fracture toughness.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. X.D. Huo, L.J. Li, Z.W. Peng, S.J. Chen, J. Iron Steel Res. Int. 23 (2016) 593–601.

    Article  Google Scholar 

  2. X.F. Shi, L.Z. Chang, Z.H. Zhu, J.J. Wang, L. Zhou, J. Iron Steel Res. Int. 23 (2016) 1168–1176.

    Article  Google Scholar 

  3. C.C. Wang, C. Zhang, Z.G. Yang, J. Su, J. Iron Steel Res. Int. 25 (2018) 340–346.

    Article  Google Scholar 

  4. X.D. Wang, Z.H. Guo, Y.H. Rong, Mater. Sci. Eng. A 529 (2011) 35–40.

    Article  Google Scholar 

  5. D. Rojas, J. Garcia, O. Prat, G. Sauthoff, A.R. Kaysser-Pyzalla, Mater. Sci. Eng. A 528 (2011) 5164–5176.

    Article  Google Scholar 

  6. G. Jha, S. Das, A. Lodh, A. Haldar, Mater. Sci. Eng. A 552 (2012) 457–463.

    Article  Google Scholar 

  7. C.C. Wang, C. Zhang, Z.G. Yang, Micron 67 (2014) 112–116.

    Article  Google Scholar 

  8. C.C. Wang, C. Zhang, Z.G. Yang, J. Su, Y.Q. Weng, Mater. Sci. Eng. A 669 (2016) 312–317.

    Article  Google Scholar 

  9. F. Wang, J.J. Bhattacharyya, S.R. Agnew, Mater. Sci. Eng. A 666 (2016) 114–122.

    Article  Google Scholar 

  10. G. Monnet, S. Naamane, B. Devincre, Acta Mater. 59 (2011) 451–461.

    Article  Google Scholar 

  11. Y. Ali, D. Qiu, B. Jiang, F. Pan, M.X. Zhang, Scripta Mater. 114 (2016) 103–107.

    Article  Google Scholar 

  12. J. Nie, Y. Zhao, Y. Li, F. Wang, H. Yang, K. Hu, G. Liu, X. Liu, J. Alloy. Compd. 777 (2019) 8–17.

    Article  Google Scholar 

  13. A.M. Samuel, S.S. Mohamed, H.W. Doty, S. Valtierra, F.H. Samuel, Int. J. Cast Met. Res. 32 (2019) 1–14.

    Article  Google Scholar 

  14. V. Kumar, L. Bichler, Trans. Ind. Inst. Met. 68 (2015) 1173–1180.

    Article  Google Scholar 

  15. C. Van der Eijk, Ø. Grong, F. Haakonsen, L. Kolbeinsen, G. Tranell, ISIJ Int. 49 (2009) 1046–1050.

    Article  Google Scholar 

  16. X.Y. Cao, P. Zhu, T.G. Liu, Y.H. Lu, T. Shoji, J. Mater. Res. 32 (2017) 852–862.

    Article  Google Scholar 

  17. C.B. Shi, Q.T. Zhu, W.T. Yu, H.D. Song, J. Li, J. Mater. Eng. Perform. 25 (2016) 4785–4795.

    Article  Google Scholar 

  18. G. Guetard, I. Toda-Caraballo, P.E.J. Rivera-Díaz-del-Castillo, Int. J. Fatigue 91 (2016) 59–67.

    Article  Google Scholar 

  19. W. Hui, Y. Zhang, X. Zhao, C. Zhou, K. Wang, W. Sun, H. Dong, Mater. Sci. Eng. A 651 (2016) 311–320.

    Article  Google Scholar 

  20. D. Texier, J. Cormier, P. Villechaise, J.C. Stinville, C.J. Torbet, S. Pierret, T.M. Pollock, Mater. Sci. Eng. A 678 (2016) 122–136.

    Article  Google Scholar 

  21. Q.D. Liu, W.Q. Liu, S.J. Zhao, Met. Mater. Int. 19 (2013) 777–782.

    Article  Google Scholar 

  22. W.H. Kan, Z.J. Ye, Y. Zhu, V.K. Bhatia, K. Dolman, T. Lucey, X. Tang, G. Proust, J. Cairney, Mater. Charact. 119 (2016) 65–74.

    Article  Google Scholar 

  23. A. De Bonis, A. Santagata, A. Galasso, A. Laurita, R. Teghil, J. Colloid Interf. Sci. 489 (2017) 76–84.

    Article  Google Scholar 

  24. J. Yu, H. Yu, J. Gao, L. Zhou, A. Ding, X. Gao, H. Huang, S. Gao, A. Shah, X. Dong, X. Quan, J. Alloy. Compd. 693 (2017) 500–509.

    Article  Google Scholar 

  25. T. Ariyanto, G.R. Zhang, F. Riyahi, J. Gläsel, B.J.M. Etzold, Carbon 115 (2017) 422–429.

    Article  Google Scholar 

  26. Q. Liu, S.J. Zhao, Surf. Interf. Anal. 45 (2013) 1129–1134.

    Article  Google Scholar 

  27. J. Cui, H. Guo, J.W. Li, D.Y. Li, L. Parent, H. Tian, Tribol. Int. 103 (2016) 432–439.

    Article  Google Scholar 

  28. S. Liu, Y. Zhou, X. Xing, J. Wang, Q. Yang, J. Alloy. Compd. 691 (2017) 239–249.

    Article  Google Scholar 

  29. J.B. Seol, S.H. Na, B. Gault, J.E. Kim, J.C. Han, C.G. Park, D. Raabe, Sci. Rep. 7 (2017) 42547.

    Article  Google Scholar 

  30. C. Zhang, M. Enomoto, Acta Mater. 54 (2006) 4183–4191.

    Article  Google Scholar 

  31. H.H. Xiong, H.H. Zhang, H.N. Zhang, Y. Zhou, J. Iron Steel Res. Int. 24 (2017) 328–334.

    Article  Google Scholar 

  32. J. Guo, L. Liu, S. Liu, Y. Zhou, X. Qi, X. Ren, Q. Yang, Mater. Des. 106 (2016) 355–362.

    Article  Google Scholar 

  33. C. Tweed, B. Ralph, N. Hansen, Acta Metall. 32 (1984) 1407–1414.

    Article  Google Scholar 

  34. E.J. Palmiere, C.I. Garcia, A.J. De Ardo, Metall. Mater. Trans. A 25 (1994) 277–286.

    Article  Google Scholar 

  35. S. Ghosh, A.K. Singh, S. Mula, P. Chanda, V.V. Mahashabde, T.K. Roy, Mater. Sci. Eng. A 684 (2017) 22–36.

    Article  Google Scholar 

  36. S.M. Hong, E.K. Park, J.J. Park, M.K. Lee, L.J. Gu, Mater. Sci. Eng. A 643 (2015) 37–46.

    Article  Google Scholar 

  37. Y.J. Zhang, G. Miyamoto, K. Shinbo, T. Furuhara, Acta Mater. 128 (2017) 166–175.

    Article  Google Scholar 

  38. H.T. Cao, X.P. Dong, Z. Pan, X.W. Wu, Q.W. Huang, Y.T. Pei, Mater. Des. 100 (2016) 223–234.

    Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundation of China (Grant Nos. 51801019 and 51574080). The authors greatly acknowledged the financial support provided by the Basic Scientific Research Funds of Northeastern University (N170703004) and the China Postdoctoral Science Foundation (No. 2018M641698).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wei Xu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Cc., Shen, Cg., Zhang, Z. et al. Simulation and verification of core–shell MC carbide design in Fe–C–Ni–V–Ti steel. J. Iron Steel Res. Int. 28, 58–65 (2021). https://doi.org/10.1007/s42243-020-00451-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-020-00451-8

Keywords

Navigation