Skip to main content
Log in

Microstructure evolution of coke under CO2 and H2O atmospheres

  • Original Paper
  • Published:
Journal of Iron and Steel Research International Aims and scope Submit manuscript

Abstract

The microstructure of coke has an important influence on its thermal properties. The solution loss reactions of coke in CO2 and H2O atmospheres were investigated by in situ observation. The results showed that the isotropic components had a more vigorous reaction than the anisotropic components, and the solution loss reaction of the fine-grained mosaic structure was faster than that of the coarse-grained mosaic structure under the CO2 and H2O atmospheres. The coarse-grained mosaic structure and the flowing structure had a relatively higher anti-erosion ability in the CO2 atmosphere than in the H2O atmosphere, and there was no distinct difference in the solution loss of the isotropic structure under the CO2 and H2O atmospheres. The electron probe microanalysis showed that the Al–Si–Fe compounds in the carbon matrix had positive influence on the solution loss reaction of the anisotropic structure. The iron compounds were able to destroy the pore walls of coke and accelerate the solution loss rate of coke.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. H.B. Zuo, S.Y. Long, J.S. Wang, W.T. Guo, J. Iron Steel Res. Int. 25 (2018) 378–386.

    Article  Google Scholar 

  2. Q. Ling, H.J. Zhao, L.Y. Chen, R.L. Xie, Z. Lei, Z.G. Zhao, P. Cui, J. Iron Steel Res. Int. 25 (2018) 692–699.

    Article  Google Scholar 

  3. D.J. Gavel, A. Adema, J. Van Der Stel, J. Sietsma, R. Boom, Y. Yang, ISIJ Int. 59 (2019) 778–786.

    Article  Google Scholar 

  4. A. Babich, D. Senk, New Trends in Coal Conversion, Elsevier, 2019.

  5. A. Babich, D. Senk, H.W. Gudenau, Ironmak. Steelmak. 36 (2009) 222–229.

    Article  Google Scholar 

  6. H.S. Valia, Coke production for blast furnace ironmaking, American Iron and Steel Institute, 2014.

  7. H. Bertling, ISIJ Int. 39 (1999) 617–624.

    Article  Google Scholar 

  8. X. Xing, G. Zhang, H. Rogers, P. Zulli, O. Ostrovski, Metall. Mater. Trans. B 45 (2014) 106–112.

    Article  Google Scholar 

  9. K. Li, R. Khanna, J. Zhang, Z. Liu, V. Sahajwalla, T. Yang, D. Kong, Fuel 133 (2014) 194–215.

    Article  Google Scholar 

  10. S.S. Gornostayev, J.J. Härkki, Energy Fuels 20 (2006) 2632–2635.

    Article  Google Scholar 

  11. R. Sharma, P.S. Dash, P.K. Banerjee, D. Kumar, ISIJ Int. 45 (2005) 1820–1827.

    Article  Google Scholar 

  12. Y. Numazawa, D. Igawa, S. Matsuo, Y. Saito, Y. Matsushita, H. Aoki, T. Shishido, N. Okuyama, ISIJ Int. 58 (2018) 1420–1426.

    Article  Google Scholar 

  13. D. Vogt, J.V. Weber, J.N. Rouzaud, M. Schneider, Fuel Process. Technol. 20 (1988) 155–162.

    Article  Google Scholar 

  14. P. Cui,, M. Yang, S.G. Kang, Y. Wang, Fuel & Chemical Processes 37 (2006) No. 4, 5–7.

    Google Scholar 

  15. L.J. Fu, H.L. Hu, Science & Technology of Baotou Steel (Group) Corporation 31 (2005) No. 3, 51–53.

  16. Y. Zhang, X.Y. Bai, S.J. Qu, Journal of China Coal Society 38 (2013) 473–479.

    Google Scholar 

  17. M. İlbaş, S. Karyeyen, Int. J. Hydrogen Energy 40 (2015) 15218–15226.

    Article  Google Scholar 

  18. K. Miyazawa, T. Yokono, Y. Sanada, H. Marsh, Fuel 58 (1979) 691–692.

    Article  Google Scholar 

  19. S. Pusz, M. Krzesińska, Ł. Smędowski, J. Majewska, B. Pilawa, B. Kwiecińska, Int. J. Coal Geol. 81 (2010) 287–292.

    Article  Google Scholar 

  20. Q.Q. Zhao, Q.G. Xue, X.F. She, H. Wang, J.S. Wang, Chin. J. Process Eng. 12 (2012) 789–795.

    Google Scholar 

  21. A. Karimi, N. Semagina, M.R. Gray, Fuel 90 (2011) 1285–1291.

    Article  Google Scholar 

  22. J. Wang, Y. Yao, J. Cao, M. Jiang, Fuel 89 (2010) 310–317.

    Article  Google Scholar 

  23. H. Marsh, in: Proc. Ironmaking Conf. (United States), Univ. of Newcastle upon Tyne, England, 1982, pp. CONF-8203108.

  24. F. McCarthy, V. Sahajwalla, J. Hart, N. Saha-Chaudhury, Metall. Mater. Trans. B 34 (2003) 573–580.

    Article  Google Scholar 

  25. M.W. Chapman, B.J. Monaghan, S.A. Nightingale, J.G. Mathieson, R.J. Nightingale, ISIJ Int. 47 (2007) 973–981.

    Article  Google Scholar 

  26. H. Zhang, Metall. Mater. Trans. B 50 (2019) 204–209.

    Article  Google Scholar 

Download references

Acknowledgements

This study was conducted with financial support from the National Natural Science Foundation of China (No. 51574023).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hai-bin Zuo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhao, J., Zuo, Hb., Ling, C. et al. Microstructure evolution of coke under CO2 and H2O atmospheres. J. Iron Steel Res. Int. 27, 743–754 (2020). https://doi.org/10.1007/s42243-019-00326-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42243-019-00326-7

Keywords

Navigation