Skip to main content
Log in

A novel approach for the numerical approximation to the solution of singularly perturbed differential-difference equations with small shifts

  • Original Research
  • Published:
Journal of Applied Mathematics and Computing Aims and scope Submit manuscript

Abstract

A boundary-value problem for singularly perturbed second order differential-difference equation with both the negative(delay) and positive(advance) shifts is considered and a new exponentially fitted three term finite difference scheme is proposed for the numerical approximation of its solution. An approximate version of the considered problem is constructed by the use of Taylor’s series expansion procedure first, and then, a new three term recurrence relationship is derived by applying the finite difference approximation techniques on it. Furthermore, an exponential fitting factor is introduced in the derived new scheme using the theory of singular perturbations and an efficient ’discrete invariant imbedding algorithm’ is used to solve the resulting tridiagonal system of equations. Convergence of the method is analyzed. Numerical experiments performed on several test examples; presentation of the computational results in terms of maximum absolute errors and the comparison of the results with some other method results, show the applicability and efficiency of the proposed scheme. Graphs plotted for the solution with varying shifts show the effect of small shifts on the boundary layer behavior of the solution. Both the theoretical and numerical analysis of the method reveals that the method is able to produce uniformly convergent solutions with quadratic convergence rate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Longtin, A., Milton, J.G.: Complex oscillations in the human pupil light reflex with “mixed” and delayed feedback. Math. Biosci. 90(1–2), 183–199 (1988)

    MathSciNet  Google Scholar 

  2. Stein, R.B.: Some models of neuronal variability. Biophys. J. 7(1), 37–68 (1967)

    Google Scholar 

  3. Wazewska-Czyzewska, M., Lasota, A.: Mathematical models of the red cell system. Matematyta Stosowana 6(1), 25–40 (1976)

    Google Scholar 

  4. Derstine, M., Gibbs, H., Hopf, F., Kaplan, D.: Bifurcation gap in a hybrid optically bistable system. Phys. Rev. A 26(6), 3720–3722 (1982)

    Google Scholar 

  5. Kuang, Y.: Delay Differential Equations: With Applications in Population Dynamics. Academic press, Oval Road (1993)

    MATH  Google Scholar 

  6. Villasana, M., Radunskaya, A.: A delay differential equation model for tumor growth. J. Math. Biol. 47(3), 270–294 (2003)

    MathSciNet  MATH  Google Scholar 

  7. Mackey, M.C., Glass, L.: Oscillation and chaos in physiological control systems. Science 197(4300), 287–289 (1977)

    MATH  Google Scholar 

  8. Balachandran, B., Kalmár-Nagy, T., Gilsinn, D.E.: Delay Differential Equations. Springer, New York (2009)

    MATH  Google Scholar 

  9. Bellman, R.E., Cooke, K.L.: Differential-Difference Equations. Academic Press, New York (1963)

    MATH  Google Scholar 

  10. Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations. Oxford University Press, New York (2013)

    MATH  Google Scholar 

  11. Orszag, S., Bender, C.M.: Advanced Mathematical Methods for Scientists and Engineers. McGraw-Hill, New York (1978)

    MATH  Google Scholar 

  12. Doolan, E.P., Miller, J.J., Schilders, W.H.: Uniform Numerical Methods for Problems with Initial and Boundary Layers. Boole Press, Dublin (1980)

    MATH  Google Scholar 

  13. Driver, R.D.: Ordinary and Delay Differential Equations. Springer, New York (1977)

    MATH  Google Scholar 

  14. Eckhaus, W.: Matched Asymptotic Expansions and Singular Perturbations. North-Holland, Amsterdam (1973)

    MATH  Google Scholar 

  15. Holmes, M.: Introduction to Perturbation Methods. Springer, Berlin (1995)

    MATH  Google Scholar 

  16. Kevorkian, J., Cole, J.: Perturbation Methods in Applied Mathematics. Springer, New York (1981)

    MATH  Google Scholar 

  17. Miller, J.J., O’Riordan, E., Shishkin, G.I.: Fitted Numerical Methods for Singular Perturbation Problems: Error Estimates in the Maximum Norm for Linear Problems in One and Two Dimensions. World Scientific, Singapore (2012)

    MATH  Google Scholar 

  18. Nayfeh, A.H.: Perturbation Methods. Wiley, New York (1979)

    Google Scholar 

  19. O’Malley Jr., R.E.: Introduction to Singular Perturbations. Academic Press, New York (1974)

    MATH  Google Scholar 

  20. Kadalbajoo, M.K., Reddy, Y.: Asymptotic and numerical analysis of singular perturbation problems: a survey. Appl. Math. Comput. 30(3), 223–259 (1989)

    MathSciNet  MATH  Google Scholar 

  21. Lange, C.G., Miura, R.M.: Singular perturbation analysis of boundary value problems for differential-difference equations v small shifts with layer behavior. SIAM J. Appl. Math. 54(1), 249–272 (1994)

    MathSciNet  MATH  Google Scholar 

  22. Lange, C.G., Miura, R.M.: Singular perturbation analysis of boundary-value problems for differential-difference equations vi small shifts with rapid oscillations. SIAM J. Appl. Math. 54(1), 273–283 (1994)

    MathSciNet  MATH  Google Scholar 

  23. Lange, C.G., Miura, R.M.: Singular perturbation analysis of boundary value problems for differential-difference equations. SIAM J. Appl. Math. 42(3), 502–531 (1982)

    MathSciNet  MATH  Google Scholar 

  24. Lange, C.G., Miura, R.M.: Singular perturbation analysis of boundary value problems for differential-difference equations iii turning point problems. SIAM J. Appl. Math. 45(5), 708–734 (1985)

    MathSciNet  MATH  Google Scholar 

  25. Adilaxmi, M., Bhargavi, D., Phaneendra, K.: Numerical integration of singularly perturbed differential-difference problem using non polynomial interpolating function. J. Inf. Math. Sci. 11(2), 195–208 (2019)

    Google Scholar 

  26. Adilaxmi, M., Bhargavi, D., Reddy, Y.: An initial value technique using exponentially fitted non standard finite difference method for singularly perturbed differential-difference equations. Appl. Appl. Math. 14(1), 245–269 (2019)

    MathSciNet  MATH  Google Scholar 

  27. Kadalbajoo, M.K., Kumar, D.: A computational method for singularly perturbed nonlinear differential-difference equations with small shift. Appl. Math. Modell. 34(9), 2584–2596 (2010)

    MathSciNet  MATH  Google Scholar 

  28. Kadalbajoo, M.K., Patidar, K.C., Sharma, K.K.: \(\varepsilon \)-uniformly convergent fitted methods for the numerical solution of the problems arising from singularly perturbed general ddes. Appl. Math. Comput. 182(1), 119–139 (2006)

    MathSciNet  MATH  Google Scholar 

  29. Kadalbajoo, M., Sharma, K.: Numerical analysis of boundary-value problems for singularly-perturbed differential-difference equations with small shifts of mixed type. J. Optim. Theory Appl. 115(1), 145–163 (2002)

    MathSciNet  MATH  Google Scholar 

  30. Kadalbajoo, M., Sharma, K.: Numerical treatment of a mathematical model arising from a model of neuronal variability. J. Math. Anal. Appl. 307(2), 606–627 (2005)

    MathSciNet  MATH  Google Scholar 

  31. Kadalbajoo, M.K., Sharma, K.K.: An \(\varepsilon \)-uniform convergent method for a general boundary-value problem for singularly perturbed differential-difference equations: Small shifts of mixed type with layer behavior. J. Comput. Methods Sci. Eng. 6(1–4), 39–55 (2006)

    MATH  Google Scholar 

  32. Kaur, M., Arora, G.: A review on singular perturbed delay differential equations. Int. J. Curr. Adv. Res. 6(3), 2341–2346 (2017)

    Google Scholar 

  33. Kumar, V., Sharma, K.K.: An optimized b-spline method for solving singularly perturbed differential difference equations with delay as well as advance. Neural Parallel Sci. Comput. 16(3), 371–386 (2008)

    MathSciNet  MATH  Google Scholar 

  34. Melesse, W.G., Tiruneh, A.A., Derese, G.A.: Solving linear second-order singularly perturbed differential difference equations via initial value method. Int. J. Differ. Equ. https://doi.org/10.1155/2019/5259130 (2019)

  35. Mohapatra, J., Natesan, S.: Uniformly convergent second-order numerical method for singularly perturbed delay differential equations. Neural Parallel Sci. Comput. 16(3), 353–370 (2008)

    MathSciNet  MATH  Google Scholar 

  36. Mohapatra, J., Natesan, S.: The parameter-robust numerical method based on defect-correction technique for singularly perturbed delay differential equations with layer behavior. Int. J. Comput. Methods 7(04), 573–594 (2010)

    MathSciNet  MATH  Google Scholar 

  37. Patidar, K.C., Sharma, K.K.: \(\varepsilon \)-uniformly convergent non-standard finite difference methods for singularly perturbed differential difference equations with small delay. Appl. Math. Comput. 175(1), 864–890 (2006)

    MathSciNet  MATH  Google Scholar 

  38. Ramos, J.I.: Exponential methods for singularly perturbed ordinary differential-difference equations. Appl. Math. Comput. 182(2), 1528–1541 (2006)

    MathSciNet  MATH  Google Scholar 

  39. Sirisha, L., Phaneendra, K., Reddy, Y.: Mixed finite difference method for singularly perturbed differential difference equations with mixed shifts via domain decomposition. Ain Shams Eng. J. 9(4), 647–654 (2018)

    Google Scholar 

  40. Kumara Swamy, D., Phaneendra, K., Reddy, Y.: Accurate numerical method for singularly perturbed differential-difference equations with mixed shifts. Khayyam J. Math. 4(2), 110–122 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Swamy, D.K., Phaneendra, K., Reddy, Y.: A fitted non standard finite difference method for singularly perturbed differential difference equations with mixed shifts. J. de Afrikana 3(4), 001–020 (2016)

    Google Scholar 

  42. Swamy, D.K., Phaneendra, K., Reddy, Y.: Solution of singularly perturbed differential difference equations with mixed shifts using galerkin method with exponential fitting. Chin. J. Math. 2016, 1–10. https://doi.org/10.1155/2016/1935853 (2016)

  43. Protter, M.H., Weinberger, H.F.: Maximum Principles in Differential Equations. Springer, New York (1967)

    MATH  Google Scholar 

  44. Kellogg, R.B., Tsan, A.: Analysis of some difference approximations for a singular perturbation problem without turning points. Math. Comput. 32(144), 1025–1039 (1978)

    MathSciNet  MATH  Google Scholar 

  45. Nichols, N.: On the numerical integration of a class of singular perturbation problems. J. Optim. Theory Appl. 60(3), 439–452 (1989)

    MathSciNet  MATH  Google Scholar 

  46. Kadalbajoo, M., Sharma, K.: An \(\varepsilon \) -uniform fitted operator method for solving boundary value problems for singularly perturbed delay differential equations: Layer behavior. Int. J. Comput. Math. 80(10), 1261–1276 (2003)

    MathSciNet  MATH  Google Scholar 

  47. Kadalbajoo, M., Reddy, Y.: Numerical integration of a class of singular perturbation problems. J. Optim. Theory Appl. 51(3), 441–452 (1986)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rakesh Ranjan.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ranjan, R., Prasad, H.S. A novel approach for the numerical approximation to the solution of singularly perturbed differential-difference equations with small shifts. J. Appl. Math. Comput. 65, 403–427 (2021). https://doi.org/10.1007/s12190-020-01397-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12190-020-01397-6

Keywords

Mathematics Subject Classification

Navigation