Skip to main content
Log in

Rheological Evaluation of Asphalt Binder Modified with Nanoparticles of Titanium Dioxide

  • Research paper
  • Published:
International Journal of Civil Engineering Aims and scope Submit manuscript

Abstract

Premature cracks and permanent deformations are usual problems in Brazilian main road asphalt pavements. Researches intended to solve that problems have been developed with asphalt binder modified with polymers, fibre and recently nanoparticles. This article aims to study the incorporation of nanoparticles of titanium dioxide (TiO2) on binder 55/75-E in percentages 0%, 3%, 4%, 5% of binder mass. The modified and pure binders were evaluated in two stages: first stage binders were analysed by Fourier transform infrared spectroscopy (FTIR), second stage consisted in physical and rheological tests: penetration, softening point, rotational viscosity, performance grade (PG); these tests were performed before and after short-term ageing procedure (RTFOT), multiple stress creep and recovery (MSCR) and linear amplitude sweep (LAS). Results show that binders with TiO2 developed a high performance than the pure binder in high temperatures. This behaviour was verified through elevated stiffness and high softening point. TiO2 addition promoted non-recoverable compliant reduction, suggesting a boost in the resistance to permanent deformation. Modified binders, also, demonstrated a delay on ageing that can be testified by ageing index and reduction in loss of mass.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Data Availability

The Rheological Evaluation of Asphalt Binder 55/75-E Modified with Nanoparticles of Titanium Dioxide expression data set was downloaded from https://tinyurl.com/ybcejho2, and other data generated or analysed during this study are available from the corresponding author on reasonable request.

References

  1. Read J, Whiteoak D (2003) The shell bitumen handbook, 5th edn. Thomas Telford Publishing, London

    Google Scholar 

  2. Yao H, Dai Q, You Z et al (2016) Rheological properties, low-temperature cracking resistance, and optical performance of exfoliated graphite nanoplatelets modified asphalt binder. Constr Build Mater 113:988–996

    Article  Google Scholar 

  3. Li R, Xiao F, Amirkhanian S et al (2017) Developments of nano materials and technologies on asphalt materials—a review. Constr Build Mater 143:633–648

    Article  Google Scholar 

  4. Golestani B, Nam BH, Nejad FM et al (2015) Nanoclay application to asphalt concrete: characterization of polymer and linear nanocomposite-modified asphalt binder and mixture. Constr Build Mater 91:32–38

    Article  Google Scholar 

  5. Shafabakhsh GH, Mirabdolazimi SM, Sadeghnejad M (2014) Evaluation the effect of nano-TiO 2 on the rutting and fatigue behavior of asphalt mixtures. Constr Build Mater 54:566–571

    Article  Google Scholar 

  6. You Z, Mills-Beale J, Foley JM et al (2011) Nanoclay-modified asphalt materials: preparation and characterization. Constr Build Mater 25:1072–1078

    Article  Google Scholar 

  7. Zhang H, Zhu C, Kuang D (2015) Physical, rheological, and aging properties of bitumen containing organic expanded vermiculite and nano-zinc oxide. J Mater Civ Eng 28:04015203

    Article  Google Scholar 

  8. Zhang D, Zhang H, Zhu C et al (2017) Synergetic effect of multi-dimensional nanomaterials for anti-aging properties of SBS modified bitumen. Constr Build Mater 144:423–431

    Article  Google Scholar 

  9. Hamedi GH (2018) Investigating the use of nano coating over the aggregate surface on moisture damage of asphalt mixtures. Int J Civ Eng 16:659–669

    Article  Google Scholar 

  10. Khattak MJ, Khattab A, Rizvi HR et al (2012) The impact of carbon nano-fiber modification on asphalt binder rheology. Constr Build Mater 30:257–264

    Article  Google Scholar 

  11. Farias LGAT, Leitinho JL, de Amoni BC et al (2016) Effects of nanoclay and nanocomposites on bitumen rheological properties. Constr Build Mater 125:873–883

    Article  Google Scholar 

  12. Fang C, Yu R, Liu S et al (2013) Nanomaterials applied in asphalt modification: a review. J Mater Sci Technol 29:589–594

    Article  Google Scholar 

  13. Zare-Shahabadi A, Shokuhfar A, Ebrahimi-Nejad S (2010) Preparation and rheological characterization of asphalt binders reinforced with layered silicate nanoparticles. Constr Build Mater 24:1239–1244

    Article  Google Scholar 

  14. Zhang H, Su M, Zhao S et al (2016) High and low temperature properties of nano-particles/polymer modified asphalt. Constr Build Mater 114:323–332

    Article  Google Scholar 

  15. Tanzadeh J, Vahedi F, Kheiry PT et al (2013) Laboratory study on the effect of nano TiO2 on rutting performance of asphalt pavements. Adv Mater Res 622:990–994

    Google Scholar 

  16. Sun Z, Yi J, Huang Y et al (2016) Properties of asphalt binder modified by bio-oil derived from waste cooking oil. Constr Build Mater 102:496–504

    Article  Google Scholar 

  17. Hassan M, Mohammad L, Cooper S et al (2011) Evaluation of nano-titanium dioxide additive on asphalt binder aging properties. Transp Res Rec J Transp Res Board 2207:11–15

    Article  Google Scholar 

  18. Hu C, Ma J, Jiang H et al (2017) Evaluation of nano-TiO 2 modified waterborne epoxy resin as fog seal and exhaust degradation material in asphalt pavement. J Test Eval 45:20160157

    Article  Google Scholar 

  19. Tanzadeh J, Tanzadeh R, Nazari H (2017) Fatigue evaluation of hot mix asphalt ( HMA ) mixtures modified by optimum percent of TiO 2 nanoparticles. Adv Eng Forum 24:55–62

    Article  Google Scholar 

  20. Zhang H, Zhu C, Yu J et al (2015) Influence of surface modification on physical and ultraviolet aging resistance of bitumen containing inorganic nanoparticles. Constr Build Mater 98:735–740

    Article  Google Scholar 

  21. American Society for Testing and Materials. Standard test method for penetration of bituminous materials (ASTM D5 / D5M - 13), https://www.astm.org/Standards/D5

  22. ASTM D36 / D36M. Standard test method for softening point of bitumen (ring-and-ball apparatus). 2014

  23. ASTM D4402/D4402M—15, ASTM International (2015) Standard test method for measuring the viscosity of mold powders above their melting point using a rotational viscometer 1. ASTM Stand 94:5–7

  24. ASTM D6084 / D6084M (2018) Standard test method for elastic recovery of asphalt materials by ductilometer

  25. American Society for Testing and Materials. Standard test method for softening point of asphalt and pitch—mettler cup-and-ball method(ASTM D3461 – 14), https://www.astm.org/Standards/D3461.htm

  26. American Society for Testing and Materials. Standard test method for viscosity determination of asphalt at elevated temperatures using a rotational viscometer (ASTM D4402 / D4402M - 15), https://www.astm.org/Standards/D4402.htm

  27. American Society for Testing and Materials. Standard test method for effect of heat and air on a moving film of asphalt - rolling thin-film oven test (ASTM D2872 - 12e1), https://www.astm.org/Standards/D2872

  28. American Society for Testing and Materials. Standard specification for performance graded asphalt binder (ASTM D6373–16), https://www.astm.org/Standards/D6373.htm

  29. American Society for Testing and Materials. standard test method for multiple stress creep and recovery (MSCR) of asphalt binder using a dynamic shear rheometer (ASTM D7405–15), https://www.astm.org/Standards/D7405.htm

  30. American Association of State Highway and Transportation Officials. Standard method of test for estimating fatigue resistance of asphalt binders using the linear amplitude sweep (AASHTO TP 101), https://www.techstreet.com/standards/aashto-tp-101-12-r2016?product_id=1841697

  31. Wang LS, Hong RY (2011) Advances in nanocomposites—synthesis, surface modification and characterization ofnanoparticles

  32. Yin Y, Huang W, Lv J et al (2018) Unified construction of dynamic rheological master curve of asphalts and asphalt mixtures. Int J Civ Eng 16:1057–1067

    Article  Google Scholar 

  33. American Association of State Highway and Transportation Officials (2012) Standard specification for performance- graded asphalt binder using multiple stress creep recovery (MSCR) test. Test Standard Specifications for Transportation Materials and Methods of Sampling and Testing (AASHTO MP 19–10), https://www.techstreet.com/mss/standards/aashto-mp-19-10?product_id=1743606

  34. Hintz C, Bahia H (2013) Simplification of linear amplitude sweep test and specification parameter. Transp Res Rec J Transp Res Board 10–16

  35. Nascimento TCB (2015) Efeito dos envelhecimentos termo-oxidativo e foto-oxidativo sobre propriedades reológicas de ligantes asfálticos modificados. Escola de Engenharia de São Carlos da Universidade de São Paulo

  36. Bayekolaei MD, Naderi K, Nejad FM (2016) A statistical analysis on the mechanical properties of nanocomposite modified asphalt mixtures. Pet Sci Technol 34:1439–1446

    Article  Google Scholar 

  37. Marinho Filho PGT, dos Santos RAT, de Lucena LCFL et al (2019) Rheological evaluation of asphalt binder 50/70 incorporated with titanium dioxide nanoparticles. J Mater Civ Eng 31:1–9

    Google Scholar 

  38. Elseifi MA, Salari S, Mohammad LN et al (2012) New approach to recycling asphalt shingles in hot-mix asphalt. J Mater Civ Eng 24:1403–1411

    Article  Google Scholar 

  39. Ali SIA, Ismail A, Karim MR et al (2017) Performance evaluation of Al2O3 nanoparticle-modified asphalt binder. Road Mater Pavement Des 18:1251–1268

    Article  Google Scholar 

  40. Jahromi SG, Khodaii A (2009) Effects of nanoclay on rheological properties of bitumen binder. Constr Build Mater 23:2894–2904

    Article  Google Scholar 

  41. Shafabakhsh GH, Ani OJ (2015) Experimental investigation of effect of Nano TiO 2/SiO 2 modified bitumen on the rutting and fatigue performance of asphalt mixtures containing steel slag aggregates. Constr Build Mater 98:692–702

    Article  Google Scholar 

  42. Faramarzi M, Arabani M, Haghi AK et al (2015) Carbon nanotubes-modified asphalt binder: preparation and characterization. Int J Pavement Res Technol 8:29–37

    Google Scholar 

  43. Nofendra M, Surmayanti PM (2018) Characterization of the performance of aluminum oxide nanoparticles modified asphalt binder. Jurnal Teknologi 8:55–62

    Google Scholar 

  44. Silva JPS (201) Avaliação dos efeitos de produtos rejuvenescedores em misturas asfálticas. Tese (Doutorado em Engenharia)–Universidade de Brasília, 145 p

  45. Bernucci LB, Motta LMG, Ceratti JAP, et al (2008) Pavimentação asfáltica: formação básica para engenheiros. 3rd ed. Rio de Janeiro

  46. Fini EH, Hajikarimi P, Rahi M et al (2016) Physiochemical, rheological, and oxidative aging characteristics of asphalt binder in the presence of mesoporous silica nanoparticles. J Mater Civ Eng 28:4015133

    Article  Google Scholar 

  47. FHWA FHA. Superpave Binder Specification

  48. Nazari H, Naderi K, Moghadas NF (2018) Improving aging resistance and fatigue performance of asphalt binders using inorganic nanoparticles. Constr Build Mater 170:591–602

    Article  Google Scholar 

  49. Singh D, Girimath S, Ashish PK (2018) Performance evaluation of polymer-modified binder containing reclaimed asphalt pavement using multiple stress creep recovery and linear amplitude sweep tests. J Mater Civ Eng. https://doi.org/10.1061/(ASCE)MT.1943-5533.0002176

    Article  Google Scholar 

Download references

Acknowledgments

We would like to thank the Brazilian National Council for Scientific and Technological Development (CNPQ) for funding this research.

Funding

This work was supported by Council for Scientific and Technological Development (CNPQ).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lêda Christiane Lucena.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Filho, P.G.T.M., dos Santos, A.T.R., Lucena, L.C. et al. Rheological Evaluation of Asphalt Binder Modified with Nanoparticles of Titanium Dioxide. Int J Civ Eng 18, 1195–1207 (2020). https://doi.org/10.1007/s40999-020-00525-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40999-020-00525-4

Keywords

Navigation