Skip to main content
Log in

Optimal Threshold of Intermittent Maneuver for Target Observability Improvement

  • Original Paper
  • Published:
International Journal of Aeronautical and Space Sciences Aims and scope Submit manuscript

Abstract

This study considers intermittent maneuver based on line-of-sight rate bounding to improve target observability for passive homing guidance. Target observability is critical for the performance of the target tracking filter and indirectly affects the guidance accuracy. This paper derives an observability measure associated with the Fisher information matrix for the adaptive intermittent maneuver strategy proposed in the previous studies. Then, the key parameters of the adaptive intermittent strategy are identified and optimized to maximize the observability measure. Numerical simulations demonstrate that the tracking filter performance is significantly improved. It is also confirmed that the guidance accuracy of proportional navigation is also improved by employing the adaptive intermittent maneuver strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. Palumbo NF, Blauwkamp RA, Lloyd JM (2010) Basic principles of homing guidance. Johns Hopkins APL Technical Digest 29(1):25–41

    Google Scholar 

  2. Waldmann J (2002) Line-of-sight rate estimation and linearizing control of an imaging seeker in a tactical missile guided by proportional navigation. IEEE Trans Control Syst Technol 10(4):556–567

    Article  Google Scholar 

  3. Kim TH, Lee CH, Jeon IS, Tahk MJ (2013) Augmented polynomial guidance with impact time and angle constraints. IEEE Trans Aerosp Electron Syst 49(4):2806–2817

    Article  Google Scholar 

  4. Kim TH, Lee CH, Tahk MJ (2011) Time-to-go polynomial guidance laws with terminal impact angle/acceleration constraints. IFAC Proc Vol 44(1):3915–3919

    Article  Google Scholar 

  5. Ryoo CK, Cho H, Tahk MJ (2005) Optimal guidance laws with terminal impact angle constraint. J Guid Control Dyn 28(4):724–732

    Article  Google Scholar 

  6. Lee CH, Kim TH, Tahk MJ, Whang IH (2013) Polynomial guidance laws considering terminal impact angle and acceleration constraints. IEEE Trans Aerosp Electron Syst 49(1):74–92

    Article  Google Scholar 

  7. Van Handel R (2009) Observability and nonlinear filtering. Probab Theory Relat Fields 145(1–2):35–74

    Article  MathSciNet  Google Scholar 

  8. Liu PT (1988) An optimum approach in target tracking with bearing measurements. J Optim Theory Appl 56(2):205–214

    Article  MathSciNet  Google Scholar 

  9. Tahk MJ, Ryu H, Song EJ (1995) Observability characteristics of angle-only measurement under proportional navigation. In: SICE'95. Proceedings of the 34th SICE Annual Conference. International Session Papers (pp. 1509–1514). IEEE.

  10. Hepner SA, Geering HP (1990) Observability analysis for target maneuver estimation via bearing-only and bearing-rate-only measurements. J Guid Control Dyn 13(6):977–983

    Article  Google Scholar 

  11. Nardone SC, Aidala VJ (1981) Observability criteria for bearings-only target motion analysis. IEEE Trans Aerosp Electron Syst 2:162–166

    Article  MathSciNet  Google Scholar 

  12. Song TL (1996) Observability of target tracking with bearings-only measurements. IEEE Trans Aerosp Electron Syst 32(4):1468–1472

    Article  Google Scholar 

  13. Kim TH, Lee CH, Tahk MJ (2013) Time-to-go polynomial guidance with trajectory modulation for observability enhancement. IEEE Trans Aerosp Electron Syst 49(1):55–73

    Article  Google Scholar 

  14. Song TL, Um TY (1996) Practical guidance for homing missiles with bearings-only measurements. IEEE Trans Aerosp Electron Syst 32(1):434–443

    Article  Google Scholar 

  15. Speyer JL, Hull DG, Larson SW, Tseng CY (1984) Estimation enhancement by trajectory modulation for homing missiles. J Guid Control Dyn 7(2):167–174

    Article  Google Scholar 

  16. Hull DG, Speyer JL, Burris DB (1990) Linear-quadratic guidance law for dual control of homing missiles. J Guid Control Dyn 13(1):137–144

    Article  MathSciNet  Google Scholar 

  17. Tahk MJ, Speyer JL (1989) Use of intermittent maneuvers for miss distance reduction in exoatmospheric engagements. In Guidance, Navigation and Control Conference, p. 3547.

  18. Tahk MJ, Ryu H (1992) Adaptive intermittent maneuvers of passive homing missiles for intercept performance improvement. In: 18th Congress of ICAS. ICAS, p.1133–1137

  19. Lee HI, Tahk MJ, Sun BC (2001) Practical dual-control guidance using adaptive intermittent maneuver strategy. J Guid Control Dyn 24(5):1009–1015

    Article  Google Scholar 

  20. Tichavsky P, Muravchik CH, Nehorai A (1998) Posterior Cramér-Rao bounds for discrete-time nonlinear filtering. IEEE Trans Signal Process 46(5):1386–1396

    Article  Google Scholar 

  21. Wu, W, Zhang F, Wardi Y (2014) Target localization: Energy-information trade-offs using mobile sensor networks. In: 53rd IEEE Conference on Decision and Control. IEEE, p. 2944–2949

  22. Hammel SE, Liu PT, Hilliard EJ, Gong KF (1989) Optimal observer motion for localization with bearing measurements. Comput Math Appl 18(1–3):171–180

    Article  MathSciNet  Google Scholar 

  23. Song TL, Ahn JY, Park C (1988) Suboptimal filter design with pseudomeasurements for target tracking. IEEE Trans Aerosp Electron Syst 24(1):28–39

    Article  Google Scholar 

  24. Whitcombe DW (1972) Pseudo state measurements applied to recursive nonlinear filtering (No. TR-0073 (3115)-2). Aerospace Corp, EL Segundo CA, Engineering Science Operations.

  25. Cho MH, Tahk MJ, Kim MC, Lee D, Yoon J (2017) Modified gain pseudo-measurement filter design for radar target tracking with range rate measurement. In2017 25th Mediterranean Conference on Control and Automation (MED). IEEE, pp. 1195–1200

Download references

Acknowledgement

This work was conducted at High-Speed Vehicle Research Center of Korea Advanced Institute of Science and Technology with the support of Defense Acquisition Administration and Agency for Defense Development (Contract Number: UD170018CD)

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Jea Tahk.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lee, D., Tahk, MJ. & Lee, CH. Optimal Threshold of Intermittent Maneuver for Target Observability Improvement. Int. J. Aeronaut. Space Sci. 22, 911–922 (2021). https://doi.org/10.1007/s42405-020-00302-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42405-020-00302-6

Keywords

Navigation