Skip to main content
Log in

A Wind Estimation Based on Unscented Kalman Filter for Standoff Target Tracking Using a Fixed-Wing UAV

  • Original Paper
  • Published:
International Journal of Aeronautical and Space Sciences Aims and scope Submit manuscript

Abstract

To address standoff target tracking using a fixed-wing UAV in unknown background wind, a wind estimation based on Unscented Kalman Filter (UKF) is proposed. In the paper, UAV dynamic model and target state estimation are constructed, and Lyapunov vector field guidance (LVFG) framework is introduced to achieve standoff target tracking. The unknown target state and wind dynamic model have seldom been discussed for standoff tracking in the previous research. Therefore, two typical wind dynamic models with Dryden and Davenport spectrums are constructed for the target in the high altitude or near the ground. Then, the unscented transformation is adopted to estimate the position of UAV under guidance command generated by LVFG and saturation constraint. A wind state estimation method based on UKF is proposed to improve performance of standoff tracking. Simulated and realistic ground vehicle trajectories are used to demonstrate the availability and effectiveness of the proposed method for different wind dynamic models.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Zhang B, Sun X, Liu S, Deng X (2019) Formation control of multiple UAVs incorporating extended state observer-based model predictive approach. Int J Aeronaut Space Sci 20(4):953–963. https://doi.org/10.1007/s42405-019-00180-7

    Article  Google Scholar 

  2. Mahmud I, Cho YZ (2018) Detection avoidance and priority-aware target tracking for UAV group reconnaissance operations. J Intell Robot Syst 92(2):381–392. https://doi.org/10.1007/s10846-017-0745-9

    Article  Google Scholar 

  3. Solazzo D, Sankey JB, Sankey TT, Munson SM (2018) Mapping and measuring aeolian sand dunes with photogrammetry and LiDAR from unmanned aerial vehicles (UAV) and multispectral satellite imagery on the Paria Plateau, AZ, USA. Geomorphology 319:174–185. https://doi.org/10.1016/j.geomorph.2018.07.023

  4. Park S (2016) Circling over a target with relative side bearing. J Guid Control Dyn 39(6):1450–1456. https://doi.org/10.2514/1.G001421

    Article  Google Scholar 

  5. Wise R, Rysdyk R (2006) UAV Coordination for autonomous target tracking. In: AIAA guidance, navigation, and control conference and exhibit, pp 1–22. https://doi.org/10.2514/6.2006-6453

  6. Lawrence DA (2003) Lyapunov Vector Fields for UAV Flock Coordination. In: 2nd AIAA unmanned unlimited systems, technologies, and operations conference, September. https://doi.org/10.2514/6.2003-6575

  7. Nelson DR, Barber DB, McLain TW, Beard RW (2007) Vector field path following for miniature air vehicles. IEEE Trans Robot 23(3):519–529. https://doi.org/10.1109/TRO.2007.898976

    Article  Google Scholar 

  8. Griffiths SR (2006) Vector field approach for curved path following for miniature aerial vehicles. AIAA Guid Navig Control Conf 61:63–64. https://doi.org/10.2514/6.2006-6467

    Article  Google Scholar 

  9. Liang Y, Jia Y, Wang Z, Matsuno F (2015) Vector field guidance for three-dimensional curved path following with fixed-wing UAVs. In: 2015 American Control Conference, Chicago, IL, USA, pp 5980–5985. https://doi.org/10.1109/ACC.2015.7172278

  10. Abozied MAH, Qin S (2017) High performance path following for UAV based on advanced vector field guidance law. In: 2016 IEEE advanced information management, communicates, electronic and automation control conference, IMCEC 2016, pp 555–564, https://doi.org/10.1109/IMCEC.2016.7867272

  11. Chen H (2013) UAV Path Planning with Tangent-plus-Lyapunov Vector Field Guidance and Obstacle Avoidance. IEEE Transactions on Aerospace and Electronic Systems 49(2):840–856, https://ieeexplore.ieee.org/document/6494384

  12. Chen H, Chang K, Agate CS (2009) Tracking with UAV using Tangent-plus-Lyapunov Vector Field Guidance. In: 12th International Conference on Information Fusion, pp 363–372

  13. Frew EW, Lawrence DA, Morris S (2008) Coordinated standoff tracking of moving targets using lyapunov guidance vector fields. J Guid Contro Dyn 31(2):290–306. https://doi.org/10.2514/1.30507

    Article  Google Scholar 

  14. Pothen AA, Ratnoo A (2017) Curvature–constrained lyapunov vector field for standoff target tracking. J Guid Control Dyn 40(10):2729–2736. https://doi.org/10.2514/1.G002281

    Article  Google Scholar 

  15. Thomasson PG (2008) Guidance of a roll-only camera for ground observation in wind. J Guid Control Dyn 21(1):39–44. https://doi.org/10.2514/2.4230

    Article  MathSciNet  MATH  Google Scholar 

  16. Osborne J, Rysdyk R (2005) Waypoint Guidance for Small UAVs in Wind. In: AAIA, pp 1–12. https://doi.org/10.2514/6.2005-6951

  17. Rysdyk R (2006) Unmanned aerial vehicle path following for target observation in wind. J Guid Control Dyn 29(5):1092–1100. https://doi.org/10.2514/1.19101

    Article  Google Scholar 

  18. Zhu S, Wang D, Low CB (2013) Ground target tracking using UAV with input constraints. J Intell Robot Syst Theory Appl 69(1–4):417–429. https://doi.org/10.1007/s10846-012-9737-y

    Article  Google Scholar 

  19. Summers TH, Akella MR, Mears MJ (2009) Coordinated standoff tracking of moving targets: control laws and information architectures. J Guid Control Dyn 32(1):56–69. https://doi.org/10.2514/1.37212. arXiv: 0901.2772

    Article  Google Scholar 

  20. Kim S, Oh H, Tsourdos A (2013) Nonlinear model predictive coordinated standoff tracking of a moving ground vehicle. J Guid Control Dyn 36(2):557–566. https://doi.org/10.2514/1.56254

    Article  Google Scholar 

  21. Oh H, Kim S, Tsourdos A, White BA (2014) Decentralised Standoff tracking of moving targets using adaptive sliding mode control for UAVs. J Intell Robot Syst Theory Appl 76(1):169–183. https://doi.org/10.1007/s10846-013-9864-0

    Article  Google Scholar 

  22. Ren W (2007) Trajectory tracking control for a miniature fixed-wing unmanned air vehicle. Int J Syst Sci 38:361–368. https://doi.org/10.1080/00207720601170586

    Article  MathSciNet  MATH  Google Scholar 

  23. Vikranth S, Sudheesh P, Jayakumar M (2016) Nonlinear tracking of target submarine using extended Kalman filter (EKF). Commun Comput Inform Sci 625:258–268

    Article  Google Scholar 

  24. He Y, Xiu JJ, Guan X, Zhang JW (2013) Radar data processing with applications, 3rd edn. Publishing House of Electronics Industry, Beijing

    Google Scholar 

  25. Julier SJ, Uhlmann JK (2004) Unscented filtering and nonlinear estimation. Proc IEEE 92(3):401–422. https://doi.org/10.1109/JPROC.2003.823141

    Article  Google Scholar 

  26. Arasaratnam I, Haykin S (2009) Cubature kalman filters. IEEE Trans Autom Control 54(6):1254–1269. https://doi.org/10.1109/TAC.2009.2019800

    Article  MathSciNet  MATH  Google Scholar 

  27. Lim S, Kim Y, Lee D, Bang H (2013) Standoff target tracking using a vector field for multiple unmanned aircrafts. J Intell Robot Syst Theory Appl 69(1–4):347–360. https://doi.org/10.1007/s10846-012-9765-7

    Article  Google Scholar 

  28. Tr BEAL (2008) Digital simulation of atmospheric turbulence for Dryden and von Karman models. J Guid Control Dyn 16(1):132–138. https://doi.org/10.2514/3.11437

    Article  Google Scholar 

  29. Gawronski W (2004) Modeling wind–gust disturbances for the analysis of antenna pointing accuracy. IEEE Anten Propagat Mag 46(1):50–58. https://doi.org/10.1109/MAP.2004.1296144

    Article  Google Scholar 

  30. Zheng Y, Li Q, Chen Y, Xie X, Ma WY (2008) Understanding mobility based on GPS data. In: Proceedings of ACM conference on ubiquitous computing (UbiComp 2008), ACM Press, Seoul, Korea, pp 312–321. https://doi.org/10.1145/1409635.1409677

  31. Zheng Y, Zhang L, Xie X, Ma WY (2009) Mining interesting locations and travel sequences from GPS trajectories. In: Proceedings of International World Wide Web Conference on World Wild Web (WWW 2009), ACM Press, Madrid Spain, pp 791–800. https://doi.org/10.1145/1526709.1526816

  32. Mehrotra K, Mahapatra PR (1997) A jerk model for tracking highly maneuvering targets. IEEE Trans Aerosp Electron Syst 33(4):1094–1105. https://doi.org/10.1109/7.sps624345

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported in part by the National Natural Science Foundation of China (Nos. 91538201, 61531020, and 61671463).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kai Dong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sun, S., Dong, K., Guo, C. et al. A Wind Estimation Based on Unscented Kalman Filter for Standoff Target Tracking Using a Fixed-Wing UAV. Int. J. Aeronaut. Space Sci. 22, 366–375 (2021). https://doi.org/10.1007/s42405-020-00290-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42405-020-00290-7

Keywords

Navigation