Skip to main content
Log in

Generalized Polynomial Guidance for Terminal Velocity Control of Tactical Ballistic Missiles

  • Original Paper
  • Published:
International Journal of Aeronautical and Space Sciences Aims and scope Submit manuscript

Abstract

This paper proposes generalized polynomial guidance for controlling the terminal velocity vector (speed and flight path angle), which could be critical for the effectiveness of the warhead of tactical ballistic missiles. A polynomial reference trajectory satisfying the initial and terminal altitudes and flight path angles is introduced with a guidance parameter that can be chosen to change the terminal speed. A single differential equation of the speed along the reference trajectory is then derived and an iterative search method for determining the guidance parameter to satisfy the prescribed terminal speed is proposed. Numerical simulation study with various impact angle and terminal speed constraints is conducted to demonstrate the performance of the proposed guidance method for terminal velocity control. Robustness of the proposed method to drag variations is also investigated to check the feasibility of generalized polynomial guidance for a practical purpose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Hargraves CR, Paris SW (1987) Direct trajectory optimization using nonlinear programming and collocation. J Guid Control Dyn 10(4):338–342

    Article  Google Scholar 

  2. Von Stryk O, Bulirsch R (1992) Direct and indirect methods for trajectory optimization. Ann Oper Res 37(1):357–373

    Article  MathSciNet  Google Scholar 

  3. Herman AL, Conway BA (1996) Direct optimization using collocation based on high-order Gauss-Lobatto quadrature rules. J Guid Control Dyn 19(3):592–599

    Article  Google Scholar 

  4. Fahroo F, Ross IM (2002) Direct trajectory optimization by a Chebyshev pseudospectral method. J Guid Control Dyn 25(1):160–166

    Article  Google Scholar 

  5. Rea J Launch vehicle trajectory optimization using a Legendre pseudospectral method. In: AIAA guidance, navigation, and control conference and exhibit, 2003. p 5640

  6. Benson DA, Huntington GT, Thorvaldsen TP, Rao AV (2006) Direct trajectory optimization and costate estimation via an orthogonal collocation method. J Guid Control Dyn 29(6):1435–1440

    Article  Google Scholar 

  7. Rosa Sentinella M, Casalino L Genetic algorithm and indirect method coupling for low-thrust trajectory optimization. In: 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, 2006. p 4468

  8. Yong E-m, Tang G-j, Chen L (2008) Rapid trajectory optimization for hypersonic reentry vehicle via gauss pseudospectral method. J Astronaut 29(6):1766–1772

    Google Scholar 

  9. Morari M, Lee JH (1999) Model predictive control: past, present and future. Comput Chem Eng 23(4–5):667–682

    Article  Google Scholar 

  10. Rawlings JB, Mayne DQ (2009) Model predictive control: Theory and design.

  11. Baldwin M, Kolmanovsky I Hypersonic glider guidance using model predictive control. In: American Control Conference (ACC), 2013, 2013. IEEE, pp 5550–5555

  12. Padhi R, Kothari M (2009) Model predictive static programming: a computationally efficient technique for suboptimal control design. Int J Innov Comput Inform Control 5(2):399–411

    Google Scholar 

  13. Oza HB, Padhi R (2012) Impact-angle-constrained suboptimal model predictive static programming guidance of air-to-ground missiles. J Guid Control Dyn 35(1):153–164

    Article  Google Scholar 

  14. Halbe O, Raja RG, Padhi R (2013) Robust reentry guidance of a reusable launch vehicle using model predictive static programming. J Guid Control Dyn 37(1):134–148

    Article  Google Scholar 

  15. Maity A, Oza HB, Padhi R (2014) Generalized model predictive static programming and angle-constrained guidance of air-to-ground missiles. J Guid Control Dyn 37(6):1897–1913

    Article  Google Scholar 

  16. Sturm JF (2002) Implementation of interior point methods for mixed semidefinite and second order cone optimization problems. Optim Methods Softw 17(6):1105–1154

    Article  MathSciNet  Google Scholar 

  17. Andersen ED, Roos C, Terlaky T (2003) On implementing a primal-dual interior-point method for conic quadratic optimization. Math Prog 95(2):249–277

    Article  MathSciNet  Google Scholar 

  18. Blackmore L, Acikmese B, Scharf DP (2010) Minimum-landing-error powered-descent guidance for Mars landing using convex optimization. J Guid Control Dyn 33(4):1161–1171

    Article  Google Scholar 

  19. Liu X, Lu P (2014) Solving nonconvex optimal control problems by convex optimization. J Guid Control Dyn 37(3):750–765

    Article  Google Scholar 

  20. Liu X (2013) Autonomous trajectory planning by convex optimization.

  21. Liu X, Shen Z, Lu P (2015) Entry trajectory optimization by second-order cone programming. J Guid Control Dyn 39(2):227–241

    Article  Google Scholar 

  22. Lu P, Liu X (2013) Autonomous trajectory planning for rendezvous and proximity operations by conic optimization. J Guid Control Dyn 36(2):375–389

    Article  Google Scholar 

  23. Ohlmeyer EJ, Phillips CA (2006) Generalized vector explicit guidance. J Guid Control Dyn 29(2):261–268

    Article  Google Scholar 

  24. Ryoo C-K, Cho H, Tahk M-J (2005) Optimal guidance laws with terminal impact angle constraint. J Guid Control Dyn 28(4):724–732

    Article  Google Scholar 

  25. Ryoo C-K, Cho H, Tahk M-J (2006) Time-to-go weighted optimal guidance with impact angle constraints. IEEE Trans Control Syst Technol 14(3):483–492

    Article  Google Scholar 

  26. Min B-M, Tahk M-J, Shim H-C, Bang H-C, Guidance law for vision-based automatic landing of UAV. KSAS International Journal 8(1): 46–53

  27. Lee C-H, Kim T-H, Tahk M-J, Whang I-H (2013) Polynomial guidance laws considering terminal impact angle and acceleration constraints. IEEE Trans Aerosp Electron Syst 49(1):74–92

    Article  Google Scholar 

  28. Kim T-H, Lee C-H, Jeon I-S, Tahk M-J (2013) Augmented polynomial guidance with impact time and angle constraints. IEEE Trans Aerosp Electron Syst 49(4):2806–2817

    Article  Google Scholar 

  29. Tahk M-J, Moon G-H, Shim S-W (2019) Augmented polynomial guidance with terminal speed constraints for unpowered aerial vehicles. Int J Aeronaut Space Sci 20(1):183–194

    Article  Google Scholar 

  30. Ahn J, Roh W-R (2012) Noniterative instantaneous impact point prediction algorithm for launch operations. J Guid Control Dyn 35(2):645–648

    Article  Google Scholar 

  31. Chudinov PS (2002) The motion of a heavy particle in a medium with quadratic drag force. Int J Nonlinear Sci Numer Simul 3(2):121–130

    Article  Google Scholar 

  32. Chudinov PS (2010) Approximate formula for the vertical asymptote of projectile motion in midair. Int J Math Educ Sci Technol 41(1):92–98

    Article  MathSciNet  Google Scholar 

  33. Han S, Hwang M-C, Lee B-Y, Ahn J, Tahk M-J (2016) Analytic solution of projectile motion with quadratic drag and unity thrust. IFAC-PapersOnLine 49(17):40–45

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Hanwha Corporation Defense R&D Center.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Min-Jea Tahk.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Moon, GH., Tahk, MJ., Han, D.H. et al. Generalized Polynomial Guidance for Terminal Velocity Control of Tactical Ballistic Missiles. Int. J. Aeronaut. Space Sci. 22, 163–175 (2021). https://doi.org/10.1007/s42405-020-00291-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42405-020-00291-6

Keywords

Navigation