Skip to main content

Advertisement

Log in

Deep geothermal resource assessment of the St. Lawrence Lowlands sedimentary basin (Québec) based on 3D regional geological modelling

  • Original Article
  • Published:
Geomechanics and Geophysics for Geo-Energy and Geo-Resources Aims and scope Submit manuscript

Abstract

Geothermal resource quantification requires underground temperature and volume information, which can be challenging to accurately assess at the regional scale. The analytical solution for steady-state heat conduction with internal heat generation is often used to calculate temperature at depth, while geological models can provide volume information. Both approaches were originally combined in a single 3D geological model, in which the underground temperature is directly computed, to accurately evaluate geothermal resources suitable for power generation in the St. Lawrence Lowlands sedimentary basin covering 18,000 km2 in Quebec, Canada, and improve methods for geothermal resource quantification. This approach, used for the first time at such a large scale, allowed to determine the volume of each thermal unit providing a detail assessment of resource depth, temperature and host geological formation. Only 5% of geothermal resources at a temperature above 120 °C that is suitable for power generation were shown to be hosted in the Cambro-Ordovician sedimentary rock sequences at a depth of 4 to 6 km, while 95% of the resource is hosted by the underlying Precambrian basement.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

A :

Heat generation rate (µW m−3)

c :

Heat capacity (J kg−1 K−1)

E :

Energy (J)

e :

Vertical thickness (m)

P :

Power (W)

Q :

Heat flow (mW m−2)

s :

Thermal diffusivity (m2 s−1)

T :

Temperature (°C)

t :

Time (s)

V :

Volume (m3)

T/∆z :

Geothermal gradient (°C m−1)

η :

Efficiency (%)

λ:

Thermal conductivity (W m−1 K−1)

ρ :

Density (kg m−3)

ϕ :

Proportion or recovery factor (%)

e:

Effective or electrical

f:

Final

i:

Entity or initial

n:

Total number of entities

PC:

Precambrian basement

r:

Rock

rec:

Recoverable

sed:

Sedimentary

th:

Thermal

tot:

Total

z:

True vertical depths (TVD; m)

0:

At the surface

References

  • Batir JF, Blackwell DD, Richards MC (2016) Heat flow and temperature-depth curves throughout Alaska: finding regions for future geothermal exploration. J Geophys Eng 13(3):366–378. https://doi.org/10.1088/1742-2132/13/3/366

    Article  Google Scholar 

  • Bédard K, Malo M, Comeau F-A (2013) CO2 geological storage in the province of Québec, Canada capacity evaluation of the St. Lawrence Lowlands basin. Energy Procedia 37:5093–5100. https://doi.org/10.1016/j.egypro.2013.06.422

    Article  Google Scholar 

  • Bédard K, Raymond J, Malo M, Konstantinovskaya E, Minea V (2014) St. Lawrence Lowlands bottom-hole temperatures: various correction methods. GRC Trans 38:351–355

    Google Scholar 

  • Bédard K, Comeau F-A, Millet E, Raymond J, Malo M, Gloaguen E (2016) Évaluation des ressources géothermiques du bassin des Basses-Terres du Saint-Laurent. Institut national de la recherche scientifique. Report R1659, Québec. http://espace.inrs.ca/4845/

  • Bédard K, Comeau F-A, Raymond J, Malo M, Nasr M (2017) Geothermal characterization of the St. Lawrence Lowlands Sedimentary Basin, Québec, Canada. Nat Resour Res 27:479–502. https://doi.org/10.1007/s11053-017-9363-2

    Article  Google Scholar 

  • Békési E, Struijk M, Bonté D, Veldkamp H, Limberger J, Fokker PA, Vrijlandt M, van Wees J-D (2020) An updated geothermal model of the Dutch subsurface based on inversion of temperature data. Geothermics 88:101880. https://doi.org/10.1016/j.geothermics.2020.101880

    Article  Google Scholar 

  • Bertrand R, Chagnon A, Malo M, Duchaine Y, Lavoie D, Savard MM (2003) Sedimentologic, diagenetic and tectonic evolution of the Saint-Flavien gas reservoir at the structural front of the Quebec Appalachians. Bull Can Pet Geol 51(2):126–154. https://doi.org/10.2113/51.2.126

    Article  Google Scholar 

  • Blackwell DD, Richards M (2004) Geothermal map of North America. American Association of Petroleum Geologists, sheet 1, scale 1:6,500,000

  • Blackwell DD, Negraru P, Richards M (2006) Assessment of the enhanced geothermal system resource base of the United States. Nat Resour Res 15(4):283–308. https://doi.org/10.1007/s11053-007-9028-7

    Article  Google Scholar 

  • Blöcher MG, Zimmermann G, Moeck I, Brandt W, Hassanzadegan A, Magri F (2010) 3D numerical modeling of hydrothermal processes during the lifetime of a deep geothermal reservoir. Geofluids 10(3):406–421. https://doi.org/10.1111/j.1468-8123.2010.00284.x

    Article  Google Scholar 

  • Calcagno P, Baujard C, Guillou-Frottier L, Dagallier A, Genter A (2014) Estimation of the deep geothermal potential within the Tertiary Limagne Basin (French Massif Central): an integrated 3D geological and thermal approach. Geothermics 51:496–508. https://doi.org/10.1016/j.geothermics.2014.02.002

    Article  Google Scholar 

  • Canadian GeoExchange Coalition (2012) The state of the Canadian geothermal heat pump industry 2011: industry survey and market analysis. Canadian Geoexchange Coalition. Internal report, Montréal

  • Castonguay S, Lavoie D, Dietrich J, Laliberté J-Y (2010) Structure and petroleum plays of the St. Lawrence Platform and Appalachians in southern Quebec: insights from interpretation of MRNQ seismic reflection data. Bull Can Pet Geol 58(3):219–234. https://doi.org/10.2113/gscpgbull.58.3.219

    Article  Google Scholar 

  • Chang P-Y, Lo W, Song S-R, Ho K-R, Wu C-S, Chen C-S, Lai Y-C, Chen H-F, Lu H-Y (2014) Evaluating the Chingshui geothermal reservoir in northeast Taiwan with a 3D integrated geophysical visualization model. Geothermics 50:91–100. https://doi.org/10.1016/j.geothermics.2013.09.014

    Article  Google Scholar 

  • Comeau F-A, Bédard K, Malo M (2013) Lithostratigraphie standardisée du bassin des Basses-Terres du Saint-Laurent basée sur l’étude des diagraphies. Institut national de la recherche scientifique, Report R-1442 (INRSCO2-2013-V1.4), Québec. http://espace.inrs.ca/1645/

  • Fuchs S, Balling N, Mathiesen A (2020) Deep basin temperature and heat-flow field in Denmark: new insights from borehole analysis and 3D geothermal modelling. Geothermics 83:101722. https://doi.org/10.1016/j.geothermics.2019.101722

    Article  Google Scholar 

  • Gasperikova E, Rosenkjaer GK, Arnason K, Newman GA, Lindsey NJ (2015) Resistivity characterization of the Krafla and Hengill geothermal fields through 3D MT inverse modeling. Geothermics 57:246–257. https://doi.org/10.1016/j.geothermics.2015.06.015

    Article  Google Scholar 

  • Gosnold W, McLaughlin S, Colby C (2016) Preliminary three-dimensional temperature structure of the Williston Basin. GRC Trans 40:639–642

    Google Scholar 

  • Guglielmetti L, Comina C, Abdelfettah Y, Schill E, Mandrone G (2013) Integration of 3D geological modeling and gravity surveys for geothermal prospection in an Alpine region. Tectonophysics 608:1025–1036. https://doi.org/10.1016/j.tecto.2013.07.012

    Article  Google Scholar 

  • Guillou-Frottier L, Mareschal J-C, Jaupart C, Gariépy C, Lapointe R, Bienfait G (1995) Heat flow variations in the Grenville Province, Canada. Earth Planet Sci Lett 136(3–4):447–460. https://doi.org/10.1016/0012-821X(95)00187-H

    Article  Google Scholar 

  • Hofmann H, Weides S, Babadagli T, Zimmermann G, Moeck I, Majorowicz J, Unsworth M (2014) Potential for enhanced geothermal systems in Alberta, Canada. Energy 69:578–591. https://doi.org/10.1016/j.energy.2014.03.053

    Article  Google Scholar 

  • Hydro-Québec (2017) Rapport annual 2017. Public report, Motréal. www.hydroquebec.com/a-propos/resultats-financiers/rapport-annuel.html

  • Jessop AM (1990) Thermal geophysics. Elsevier, Amsterdam. https://doi.org/10.1016/B978-0-444-88309-4.50015-4

    Book  Google Scholar 

  • Konstantinovskaya E, Rodriguez D, Kirkwood D, Harris LB, Thériault R (2009) Effects of basement structure, sedimentation and erosion on thrust wedge geometry: an example from the Quebec appalachians and analogue models. Bull Can Pet Geol 57(1):34–62. https://doi.org/10.2113/gscpgbull.57.1.34

    Article  Google Scholar 

  • Lachenbruch AH (1970) Crustal temperature and heat production: implications of the linear heat-flow relation. J Geophys Res 75(17):3291–3300. https://doi.org/10.1029/JB075i017p03291

    Article  Google Scholar 

  • Lefebvre P, Trempe R (1980) Gradient géothermique dans les Basses-Terres. Ministère des Ressources naturelles et de la Faune, Rapport #9206, 1980TA000-01, Québec

  • Majorowicz J, Minea V (2012) Geothermal energy potential in the St-Lawrence River area, Québec. Geothermics 43:25–36. https://doi.org/10.1016/j.geothermics.2012.03.002

    Article  Google Scholar 

  • Majorowicz J, Minea V (2015a) Geothermal energy potential in low enthalpy areas as a future energy resource: identifying feasible targets, Quebec, Canada, study case. Resources 4(3):524

    Article  Google Scholar 

  • Majorowicz J, Minea V (2015b) Shallow and deep geothermal energy potential in low heat flow/cold climate environment: northern Québec, Canada, case study. Environ Earth Sci 74(6):5233–5244. https://doi.org/10.1007/s12665-015-4533-1

    Article  Google Scholar 

  • Mareschal JC, Pinet C, Gariépy C, Jaupart C, Bienfait G, Coletta GD, Jolivet J, Lapointe R (1989) New heat flow density and radiogenic heat production data in the Canadian Shield and the Quebec Appalachians. Can J Earth Sci 26(4):845–852. https://doi.org/10.1139/e89-068

    Article  Google Scholar 

  • MIT (2006) The future of geothermal energy. Impact of enhanced geothermal systems (EGS) on the United States in the 21st century. Massachusetts Institute of Technology, Idaho National Laboratory. INL/EXT-06-11746

  • Nasr M (2016) Évaluation des propriétés thermiques de la Plate-forme du Saint-Laurent: Mesures au laboratoire et approche diagraphique. Institut National de la Recherche Scientifique, M.Sc. Thesis, Québec. http://espace.inrs.ca/4637

  • Nasr M, Raymond J, Malo M (2015) Évaluation en laboratoire des caractéristiques thermiques du bassin sédimentaire des Basses-terres du Saint-Laurent. In: Proceedings of the 68th Canadian geotechnical conference and 7th Canadian permafrost conference, Québec

  • Nasr M, Raymond J, Malo M, Gloaguen E (2018) Geothermal potential of the St. Lawrence Lowlands sedimentary basin from well log analysis. Geothermics 75:68–80. https://doi.org/10.1016/j.geothermics.2018.04.004

    Article  Google Scholar 

  • Newman GA, Gasperikova E, Hoversten GM, Wannamaker PE (2008) Three-dimensional magnetotelluric characterization of the coso geothermal field. Geothermics 37(4):369–399. https://doi.org/10.1016/j.geothermics.2008.02.006

    Article  Google Scholar 

  • Nieto IM, Martín AF, Blázquez CS, Aguilera DG, García PC, Vasco EF, García JC (2019) Use of 3D electrical resistivity tomography to improve the design of low enthalpy geothermal systems. Geothermics 79:1–13. https://doi.org/10.1016/j.geothermics.2019.01.007

    Article  Google Scholar 

  • Palmer-Wilson K, Banks J, Walsh W, Robertson B (2018) Sedimentary basin geothermal favourability mapping and power generation assessments. Renew Energy 127:1087–1100. https://doi.org/10.1016/j.renene.2018.04.078

    Article  Google Scholar 

  • Przybycin AM, Scheck-Wenderoth M, Schneider M (2017) The origin of deep geothermal anomalies in the German Molasse Basin: results from 3D numerical models of coupled fluid flow and heat transport. Geotherm Energy 5:1. https://doi.org/10.1186/s40517-016-0059-3

    Article  Google Scholar 

  • Ratouis TMP, O’Sullivan MJ, O’Sullivan JP (2016) A numerical model of rotorua geothermal field. Geothermics 60:105–125. https://doi.org/10.1016/j.geothermics.2015.12.004

    Article  Google Scholar 

  • Raymond J, Malo M, Comeau F-A, Bedard K, Lefebvre R, Therrien R (2012) Assessing the geothermal potential of the St. Lawrence sedimentary basin in Québec, Canada. In: 39th IAH Congress, Niagara Falls

  • Raymond J, Sirois C, Nasr M, Malo M (2017) Evaluating the geothermal heat pump potential from a thermostratigraphic assessment of rock samples in the St. Lawrence Lowlands, Canada. Environ Earth Sci 76(2):83. https://doi.org/10.1007/s12665-017-6398-y

    Article  Google Scholar 

  • Santilano A, Donato A, Galgaro A, Montanari D, Menghini A, Viezzoli A, Di Sipio E, Destro E, Manzella A (2016) An integrated 3D approach to assess the geothermal heat-exchange potential: the case study of western Sicily (southern Italy). Renew Energy 97:611–624. https://doi.org/10.1016/j.renene.2016.05.072

    Article  Google Scholar 

  • Saull VA, Clark TH, Doig RP, Butler RB (1962) Terrestrial heat flow in the St. Lawrence Lowland of Quebec. Can Min Metall Bull 65:63–66

    Google Scholar 

  • Sausse J, Dezayes C, Dorbath L, Genter A, Place J (2010) 3D model of fracture zones at Soultz-Sous-Forêts based on geological data, image logs, induced microseismicity and vertical seismic profiles. Vers l’exploitation des ressources géothermiques profondes des systèmes hydrothermaux convectifs en milieux naturellement fracturés 342(7):531–545. https://doi.org/10.1016/j.crte.2010.01.011

    Article  Google Scholar 

  • Siler DL, Faulds JE, Mayhew B, McNamara DD (2016) Analysis of the favorability for geothermal fluid flow in 3D: astor pass geothermal prospect, Great Basin, northwestern Nevada, USA. Geothermics 60:1–12. https://doi.org/10.1016/j.geothermics.2015.11.002

    Article  Google Scholar 

  • Siler DL, Faulds JE, Hinz NH, Dering GM, Edwards JH, Mayhew B (2019) Three-dimensional geologic mapping to assess geothermal potential: examples from Nevada and Oregon. Geotherm Energy 7:2. https://doi.org/10.1186/s40517-018-0117-0

    Article  Google Scholar 

  • SNC-SOQUIP (1979) Rapport sur le potentiel en énergie géothermique de basse énergie dans les Basses Terres du St-Laurent. Ministère des Ressources Naturelles et de la Faune, Report 1979TA000-04, Québec

  • Srivastava RM (1994) An overview of stochastic methods for reservoir characterization. In: Yarus JM, Chambers RL (eds) Stochastic modeling and geostatistics: principle, methods, and case studies AAPG computer. Application in geology, vol 3. American Association of Petroleum Geologists, Tulsa

    Google Scholar 

  • Stein CA (1995) Heat flow of the earth. In: Ahrens TJ (ed) Global earth physics. American Geophysical Union, Washington. https://doi.org/10.1029/RF001p0144

    Chapter  Google Scholar 

  • Stutz GR, Shope E, Jordan TE, Reber TJ, Whealton CA, Aguirre GA, Smith JD et al (2015) Geothermal energy characterization in the Appalachian Basin of New York and Pennsylvania. Geosphere 11(5):1291–1304. https://doi.org/10.1130/GES00499.1

    Article  Google Scholar 

  • Tran Ngoc TD, Lefebvre R, Konstantinovskaya E, Malo M (2014) Characterization of deep saline aquifers in the Bécancour Area, St. Lawrence Lowlands, Québec, Canada: implications for CO2 geological storage. Environ Earth Sci 72(1):119–146. https://doi.org/10.1007/s12665-013-2941-7

    Article  Google Scholar 

  • Turcotte DL, Schubert G (2014) Geodynamics, 3rd edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Williams CF, Reed MJ, Mariner RH (2008) A review of methods applied by the U.S. Geological Survey in the assessment of identified geothermal resources. U.S. Geological Survey, Open file report 2008-1296

  • Zhao Y, Feng Z, Feng Z, Yang D, Liang W (2015) THM (thermo-hydro-mechanical) coupled mathematical model of fractured media and numerical simulation of a 3D enhanced geothermal system at 573 K and buried depth 6000–7000 M. Energy 82:193–205. https://doi.org/10.1016/j.energy.2015.01.030

    Article  Google Scholar 

Download references

Acknowledgements

The Fonds de recherche du QuébecNature et technologies (FRQNT) and the Institut de recherche d’Hydro-Québec are acknowledged for funding this research. The third author was supported by a Banting scholarship during the completion of this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jasmin Raymond.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bédard, K., Comeau, FA., Raymond, J. et al. Deep geothermal resource assessment of the St. Lawrence Lowlands sedimentary basin (Québec) based on 3D regional geological modelling. Geomech. Geophys. Geo-energ. Geo-resour. 6, 46 (2020). https://doi.org/10.1007/s40948-020-00170-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40948-020-00170-0

Keywords

Navigation