Skip to main content
Log in

Realised volatility and parametric estimation of Heston SDEs

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

We present a detailed analysis of observable moment-based parameter estimators for the Heston SDEs jointly driving the rate of returns \((R_{t})\) and the squared volatilities \((V_{t})\). Since volatilities are not directly observable, our parameter estimators are constructed from empirical moments of realised volatilities \((Y_{t})\), which are of course observable. Realised volatilities are computed over sliding windows of size \(\varepsilon \), partitioned into \(J(\varepsilon )\) intervals. We establish criteria for the joint selection of \(J(\varepsilon )\) and of the subsampling frequency of return rates data.

We obtain explicit bounds for the \(L^{q}\) speed of convergence of realised volatilities to true volatilities as \(\varepsilon \to 0\). In turn, these bounds provide also \(L^{q}\) speeds of convergence of our observable estimators for the parameters of the Heston volatility SDE.

Our theoretical analysis is supplemented by extensive numerical simulations of joint Heston SDEs to investigate the actual performances of our moment-based parameter estimators. Our results provide practical guidelines for adequately fitting Heston SDE parameters to observed stock price series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Aït-Sahalia, Y.: Maximum likelihood estimation of discretely sampled diffusions: a closed-form approximation approach. Econometrica 70, 223–262 (2002)

    Article  MathSciNet  Google Scholar 

  2. Aït-Sahalia, Y.: Closed-form likelihood expansions for multivariate diffusions. Ann. Stat. 36, 906–937 (2008)

    Article  MathSciNet  Google Scholar 

  3. Aït-Sahalia, Y., Kimmel, R.: Maximum likelihood estimation of stochastic volatility models. J. Financ. Econ. 83, 413–452 (2007)

    Article  Google Scholar 

  4. Aït-Sahalia, Y., Mykland, P.A., Zhang, L.: How often to sample a continuous-time process in the presence of market microstructure noise. Rev. Financ. Stud. 18, 315–416 (2005)

    Article  Google Scholar 

  5. Alizadeh, S., Brandt, M.W., Diebold, F.X.: Range-based estimation of stochastic volatility models. J. Finance 57, 1047–1091 (2002)

    Article  Google Scholar 

  6. Azencott, R., Beri, A., Jain, A., Timofeyev, I.: Sub-sampling and parametric estimation for multiscale dynamics. Commun. Math. Sci. 11, 939–970 (2013)

    Article  MathSciNet  Google Scholar 

  7. Azencott, R., Beri, A., Timofeyev, I.: Adaptive sub-sampling for parametric estimation of Gaussian diffusions. J. Stat. Phys. 139, 1066–1089 (2010)

    Article  MathSciNet  Google Scholar 

  8. Azencott, R., Beri, A., Timofeyev, I.: Parametric estimation of stationary stochastic processes under indirect observability. J. Stat. Phys. 144, 150–170 (2011)

    Article  MathSciNet  Google Scholar 

  9. Azencott, R., Gadhyan, Y.: Accurate parameter estimation for coupled stochastic dynamics. In: Hou, X., et al. (eds.) Proc. 7th AIMS International Conference on Dynamical Systems, Differential Equations and Applications, pp. 44–53. American Institute of Mathematical Sciences, Clothcover (2009)

    Google Scholar 

  10. Azencott, R., Gadhyan, Y.: Accuracy of maximum likelihood parameter estimators for Heston stochastic volatility SDE. J. Stat. Phys. 159, 393–420 (2015)

    Article  MathSciNet  Google Scholar 

  11. Azencott, R., Ren, P., Timofeyev, I.: Parametric estimation from approximate data: non-Gaussian diffusions. J. Stat. Phys. 161, 1276–1298 (2015)

    Article  MathSciNet  Google Scholar 

  12. Bandi, F., Russell, J.: Separating microstructure noise from volatility. J. Financ. Econom. 79, 655–692 (2006)

    Article  Google Scholar 

  13. Barndorff-Nielsen, O.E., Shephard, N.: Econometric analysis of realized volatility and its use in estimating stochastic volatility models. J. R. Stat. Soc., Ser. B 64, 253–280 (2002)

    Article  MathSciNet  Google Scholar 

  14. Basawa, I.V., Prakasa Rao, B.L.S.: Statistical Inference for Stochastic Processes. Academic Press, New York (1980)

    MATH  Google Scholar 

  15. Bates, D.S.: Maximum likelihood estimation of latent affine processes. Rev. Financ. Stud. 19, 909–965 (2006)

    Article  Google Scholar 

  16. Ben Alaya, M., Kebaier, A.: Asymptotic behavior of the maximum likelihood estimator for ergodic and nonergodic square-root diffusions. Stoch. Anal. Appl. 31, 552–573 (2013)

    Article  MathSciNet  Google Scholar 

  17. Berkaoui, A., Bossy, M., Diop, A.: Euler scheme for SDEs with non-Lipschitz diffusion coefficient: strong convergence. ESAIM Probab. Stat. 12, 1–11 (2008)

    Article  MathSciNet  Google Scholar 

  18. Bollerslev, T., Zhou, H.: Estimating stochastic volatility diffusion using conditional moments of integrated volatility. J. Econom. 109, 33–65 (2002)

    Article  MathSciNet  Google Scholar 

  19. Burgess, D.: On the \(L^{p}\) norms of stochastic integrals and other martingales. Duke Math. J. 43, 697–704 (1976)

    Article  MathSciNet  Google Scholar 

  20. Christensen, K., Oomen, R.C.A., Podolskij, M.: Realised quantile-based estimation of the integrated variance. J. Econom. 159, 74–98 (2010)

    Article  MathSciNet  Google Scholar 

  21. Christensen, K., Podolskij, M., Vetter, M.: Bias-correcting the realized rangebased variance in the presence of market microstructure noise. Finance Stoch. 13, 239–268 (2009)

    Article  MathSciNet  Google Scholar 

  22. Comte, F., Genon-Catalot, V., Rozenholc, Y.: Nonparametric adaptive estimation for integrated diffusions. In: Stochastic Processes and Their Applications, vol. 119, pp. 811–834 (2009)

    MATH  Google Scholar 

  23. Cox, J.C., Ingersoll, J.E., Ross, R.A.: A theory of the term structure of interest rates. Econometrica 53, 385–407 (1985)

    Article  MathSciNet  Google Scholar 

  24. Crommelin, D., Vanden-Eijnden, E.: Diffusion estimation from multiscale data by operator eigenpairs. Multiscale Model. Simul. 9, 1588–1623 (2011)

    Article  MathSciNet  Google Scholar 

  25. Duffie, D., Singleton, K.J.: Simulated moments estimation of Markov models of asset prices. Econometrica 61, 929–952 (1993)

    Article  MathSciNet  Google Scholar 

  26. Feller, W.: The asymptotic distribution of the range of sums of independent random variables. Ann. Math. Stat. 22, 427–432 (1951)

    Article  MathSciNet  Google Scholar 

  27. Genon-Catalot, V.: Maximum contrast estimation for diffusion processes from discrete observations. Statistics 21, 99–116 (1990)

    Article  MathSciNet  Google Scholar 

  28. Genon-Catalot, V., Jeantheau, T., Laredo, C.: Parameter estimation for discretely observed stochastic volatility models. Bernoulli 5, 855–872 (1999)

    Article  MathSciNet  Google Scholar 

  29. Gloter, A.: Discrete sampling of an integrated diffusion process and parameter estimation of the diffusion coefficient. ESAIM, Probab. Stat. 4, 205–227 (2000)

    Article  MathSciNet  Google Scholar 

  30. Gloter, A.: Efficient estimation of drift parameters in stochastic volatility models. Finance Stoch. 11, 495–519 (2007)

    Article  MathSciNet  Google Scholar 

  31. Heston, S.L.: A closed-form solution for options with stochastic volatility with applications to bond and currency options. Rev. Financ. Stud. 6, 327–343 (1993)

    Article  MathSciNet  Google Scholar 

  32. Hoffmann, M.: Rate of convergence for parametric estimation in a stochastic volatility model. In: Stochastic Processes and Their Applications, vol. 97, pp. 147–170 (2002)

    Google Scholar 

  33. Kalnina, I.: Subsampling high frequency data. J. Econom. 161, 262–283 (2010)

    Article  MathSciNet  Google Scholar 

  34. Mariani, F., Pacelli, G., Zirilli, F.: Maximum likelihood estimation of the Heston stochastic volatility model using asset and option prices: an application of nonlinear filtering theory. Optim. Lett. 2, 177–222 (2008)

    Article  MathSciNet  Google Scholar 

  35. Papavasiliou, A., Pavliotis, G.A., Stuart, A.: Maximum likelihood drift estimation for multiscale diffusions. In: Stochastic Processes and Their Applications, vol. 119, pp. 3173–3210 (2009)

    Google Scholar 

  36. Pavliotis, G.A., Stuart, A.: Parameter estimation for multiscale diffusions. J. Stat. Phys. 127, 741–781 (2007)

    Article  MathSciNet  Google Scholar 

  37. Phillips, P.C.B., Yu, J.: Maximum likelihood and Gaussian estimation of continuous time models in finance. In: Mikosch, T., et al. (eds.) Handbook of Financial Time Series, pp. 497–530. Springer, Berlin (2009)

    Chapter  Google Scholar 

  38. Ruiz, E.: Quasi-maximum likelihood estimation of stochastic volatility models. J. Econom. 63, 289–306 (1994)

    Article  Google Scholar 

  39. Zhang, L., Mykland, P.A., Aït-Sahalia, Y.: A tale of two time scales: determining integrated volatility with noisy high-frequency data. J. Am. Stat. Assoc. 100, 1394–1411 (2005)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

I.T. and R.A. were supported in part by the NSF Grant DMS-1109582. I.T. is also partially supported by the NSF Grant DMS-1620278.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ilya Timofeyev.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Polynomial functions of volatilities and Theorem 7.1

Appendix: Polynomial functions of volatilities and Theorem 7.1

Proof of Theorem 7.1

By linearity, we only need to consider the case when \(h\) is a monomial in \(k\) variables. For \(k=1\), the result was proved in (6.4). Proceeding by induction on \(k\), assume the result is true for monomials in \(k-1\) variables \((x_{2}, \ldots , x_{k})\). Any monomial \(h\) in \(k\) variables can be written as \(h = x_{1}^{m} g(x_{2}, \ldots , x_{k})\). Define

$$ G_{T}= g (V_{u(2)+T}, \ldots , V_{u(k)+T} ) \qquad \text{and} \qquad H_{T}= V_{u(1)+T}^{m} G_{T}. $$

The induction hypothesis provides a polynomial \(R\) in \(k+1\) variables such that for all \(T\),

$$ {\mathbb{E}}_{y} [G_{T}] = R (\nu _{T}, y \nu _{T}, w_{1}, w_{2}, \ldots , w_{k-1} ), $$

where the coefficients of \(R\) are determined by \(g, \boldsymbol{\theta }\). By the Markov property, we thus get

$$ {\mathbb{E}}[G_{T} | {\mathcal{F}}_{u(1) +T} ] = R (\nu _{T}, V_{u(1) +T} \nu _{T}, w_{1}, w_{2}, \ldots , w_{k-1} ) . $$

Since \({\mathbb{E}}_{y} [H_{T}] = {\mathbb{E}}_{y} [ V_{u(1)+T}^{m} { \mathbb{E}}[G_{T} | {\mathcal{F}}_{u(1) +T}] ] \), we then obtain

$$ {\mathbb{E}}_{y} [H_{T}] = {\mathbb{E}}_{y} [ V_{u(1)+T}^{m} R(\nu _{T}, V_{u(1) +T} \nu _{T}, w_{1}, w_{2}, \ldots , w_{k-1}) ]. $$

Each monomial \(M\) of \(R\) is of the form \(\nu _{T}^{p} (V_{u(1) +T} \nu _{T})^{j} S(w_{1}, w_{2}, \ldots , w_{k-1})\) for some \(p\), \(j\) and some polynomial \(S\). Then on the right-hand side of (7.4), \(M\) contributes a term of the form

$$ \Gamma (M) = \nu _{T}^{p+j} S(w_{1}, w_{2}, \ldots , w_{k-1}) { \mathbb{E}}_{y} [ V_{u(1)+T}^{m+j} ]. $$

Due to (6.4) with \(q= m+j\), this last conditional expectation is a polynomial in the two variables

$$ \nu _{u(1)+T} = \nu _{T} w_{0} \qquad \text{and}\qquad V_{0} \nu _{u(1)+T} = y \nu _{T} w_{0} $$

with coefficients depending only on \(m+j\) and \(\boldsymbol{\theta }\). Hence \(\Gamma (M)\) is a polynomial in \(\nu _{T}\) and \(y \nu _{T}\), with coefficients which are polynomials in \((w_{0}, w_{1}, w_{2}, \ldots , w_{k-1}) \), fully determined by \(m\), \(j\), \(\boldsymbol{\theta }\). The same property must then hold for the sum \({\mathbb{E}}_{y}[H_{T}]\) of all the \(\Gamma (M)\) contributed by the monomials \(M\) of \(R\). This completes the proof of (7.4) by induction on \(k\).

Write \({\mathrm{POL}}\) in (7.4) as a polynomial \({\mathrm{POL}}(z)\) in the \(k+2\) variables \(z_{i}\). The vector \(z(T) = (\nu _{T}, y \nu _{T}, w_{0}, \ldots , w_{k-1})\) tends to \(z(\infty ) = (0, 0, w_{0}, \ldots , w_{k-1})\) as \(T \to \infty \). The polynomial \(Q(z(T)) = {\mathrm{POL}}(z(T)) - {\mathrm{POL}}(z(\infty ))\) can be written, for some integer \(p\), as

$$ Q \big(z(T)\big) = \nu _{T} A_{0} + \sum _{s=1}^{p} y^{s} \nu _{T}^{s} A_{s}, $$

with each \(A_{s}\) a polynomial in the \(k+1\) variables \((\nu _{T}, w_{0}, \ldots , w_{k-1})\) for \(s=0, \ldots , p\). Since all these positive \(k+1\) variables are inferior to 1, each \(|A_{s}|\) remains bounded for all \(T \geq 0\) and all \(u(0) < u(1) < \cdots < u(k)\). Hence there is a constant \(C\) such that

$$ | A_{s} | \leq C \quad \text{and} \quad y^{s} \leq C (1+y^{p}) \qquad \text{for all } s= 0, \ldots , p, T \geq 0, y > 0. $$

For all \(s \geq 1\), we have \(\nu _{T}^{s} \leq \nu _{T}= e^{-T \kappa }\), and hence the expansion of \(Q(z(T))\), provides a new constant \(C_{1}\) such that for all \(u(0) < u(1) < \cdots < u(k)\),

$$ | {\mathbb{E}}_{y} [H_{T}] - {\mathbb{E}}_{\psi }[H] | = \big| Q \big(z(T)\big) \big| \leq C_{1} (1+y^{p}) e^{-T \kappa } \qquad \text{for all } T \geq 0, y > 0. $$

This proves (7.6).

Let \({\overline{H}}= {\mathbb{E}}_{\psi }[H]\). Expand \(\beta (T) = (H_{T} - {\overline{H}})^{q}\) as a linear combination of terms of the form \({\overline{H}}^{q-j} H_{T}^{j} \) for \(j= 0, \ldots , q\). Recall that \(h\) is a polynomial in \(x_{1}, x_{2}, \ldots , x_{k}\). For \(j\) fixed, \(\sigma _{j} = h^{j}\) is also a polynomial in \(x_{1}, x_{2}, \ldots , x_{k}\). By the definition (7.3), we can express both \(\Sigma = H^{j}\) and \(\Sigma _{T} = H_{T}^{j}\) as

$$ \Sigma = \sigma _{j} (V_{u(1)}, \ldots , V_{u(k)} ) \qquad \text{and} \qquad \Sigma _{T}= \sigma _{j} (V_{u(1)+T}, \ldots , V_{u(k)+T} ). $$

For each \(j\), (7.6) applied to the polynomial \(\sigma = h^{j}\) provides a constant \(C_{j}\) and an integer \(p(j)\) such that

$$ | {\mathbb{E}}_{y} [\Sigma _{T}] - {\mathbb{E}}_{\psi }[\Sigma ] | \leq C_{j} (1+y^{p(j)} ) e^{-T \kappa } \qquad \text{for all } T \geq 0, y > 0, $$

and hence there are constants \(c_{j}\) such that

$$ | {\mathbb{E}}_{y} [\bar{H}^{q-j}H_{T}] - {\mathbb{E}}_{\psi }[ \bar{H}^{q-j} H_{T}] | \leq c_{j} (1+y^{p(j)} ) e^{- T \kappa } \qquad \text{for all } T \geq 0, y > 0. $$

Applying this to \(j= 0, \ldots , q\) and using the Newton binomial formula yields, for some new constant \(C\),

$$ {\mathbb{E}}[ | \beta (T) | ] \leq C e^{- T \kappa } \sum _{j= 0}^{q} c_{j} (1+y^{p(j)} ) \qquad \text{for all } T \geq 0, y > 0 $$

which completes the proof of (7.5). □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Azencott, R., Ren, P. & Timofeyev, I. Realised volatility and parametric estimation of Heston SDEs. Finance Stoch 24, 723–755 (2020). https://doi.org/10.1007/s00780-020-00427-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-020-00427-2

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation