Skip to main content
Log in

The value of informational arbitrage

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

In the context of a general semimartingale model, we aim at determining how much an investor is willing to pay to learn additional information that allows achieving arbitrage. If such a value exists, we call it the value of informational arbitrage. We are interested in the case where the information yields arbitrage opportunities but not unbounded profits with bounded risk. As in Amendinger et al. (Finance Stoch. 7:29–46, 2003), we rely on an indifference valuation approach and study optimal consumption–investment problems under initial information and arbitrage. We establish some new results on models with additional information and characterise when the value of informational arbitrage is universal.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The longer preprint version is available online on arXiv at https://arxiv.org/abs/1804.00442v1.

  2. As mentioned by Stricker and Yor [36], separability of \(L^{1}(\Omega ,\mathcal{F}_{T},\mathbb{P})\) is always satisfied in practice; necessary and sufficient conditions are given in Auerhan et al. [9, Lemma on page 200].

  3. For ease of notation, we omit to indicate explicitly the dependence on \(\omega \) in the utility stochastic field \(U\).

  4. Similarly as above, for simplicity of notation, we omit to write explicitly the dependence on \(\omega \) in the stochastic field \(I\).

  5. In view of Corollary 3.8, a fully explicit representation of the utility indifference value for \(k\neq 0\) can be obtained when the random variable \(\mathbb{E}[Z_{T}/q^{L}_{T}|\mathcal{G}_{0}]\) is a.s. constant or, equivalently, when \(\mathbb{Q}[q^{x}_{T}>0]\) does not depend on \(x\).

References

  1. Acciaio, B., Fontana, C., Kardaras, C.: Arbitrage of the first kind and filtration enlargements in semimartingale financial models. Stoch. Process. Appl. 126, 1761–1784 (2016)

    Google Scholar 

  2. Aksamit, A., Choulli, T., Jeanblanc, M.: On an optional semimartingale decomposition and the existence of a deflator in an enlarged filtration. In: Donati-Martin, C., et al. (eds.) Memoriam Marc Yor—Séminaire de Probabilités XLVII. Lecture Notes in Mathematics, vol. 2137, pp. 187–218. Springer, Berlin (2015)

    Google Scholar 

  3. Amendinger, J.: Martingale representation theorems for initially enlarged filtrations. Stoch. Process. Appl. 89, 101–116 (2000)

    Google Scholar 

  4. Amendinger, J., Becherer, D., Schweizer, M.: A monetary value for initial information in portfolio optimization. Finance Stoch. 7, 29–46 (2003)

    Google Scholar 

  5. Amendinger, J., Imkeller, P., Schweizer, M.: Additional logarithmic utility of an insider. Stoch. Process. Appl. 75, 263–286 (1998)

    Google Scholar 

  6. Ankirchner, S.: Information and Semimartingales. Ph.D. Thesis, Humboldt University Berlin (2005). Available online at https://edoc.hu-berlin.de/handle/18452/15948

  7. Ankirchner, S., Dereich, S., Imkeller, P.: The Shannon information of filtrations and the additional logarithmic utility of insiders. Ann. Probab. 34, 743–778 (2006)

    Google Scholar 

  8. Ankirchner, S., Imkeller, P.: Finite utility on financial markets with asymmetric information and structure properties of the price dynamics. Stoch. Process. Appl. 41, 479–503 (2005)

    Google Scholar 

  9. Auerhan, J., Lepingle, D., Yor, M.: Construction d’une martingale réelle continue, de filtration naturelle donnée. In: Azéma, J., Yor, M. (eds.) Séminaire de Probabilités XIV. Lecture Notes in Mathematics, vol. 784, pp. 200–204. Springer, Berlin (1980)

    Google Scholar 

  10. Beneš, V.: Existence of optimal strategies based on specified information, for a class of stochastic decision problems. SIAM J. Control Optim. 8, 179–188 (1970)

    Google Scholar 

  11. Chau, H., Cosso, A., Fontana, C., Mostovyi, O.: Optimal investment with intermediate consumption under no unbounded profits with bounded risk. J. Appl. Probab. 54, 710–719 (2017)

    Google Scholar 

  12. Chau, H., Runggaldier, W., Tankov, P.: Arbitrage and utility maximization in market models with an insider. Math. Financ. Econ. 12, 589–614 (2018)

    Google Scholar 

  13. Choulli, T., Deng, J., Ma, J.: How non-arbitrage, viability and numéraire portfolio are related. Finance Stoch. 19, 719–741 (2015)

    Google Scholar 

  14. Choulli, T., Yansori, S.: Log-optimal portfolio without NFLVR: existence, complete characterization, and duality. Preprint (2018). Available online at https://arxiv.org/abs/1807.06449

  15. Danilova, A., Monoyios, M., Ng, A.: Optimal investment with inside information and parameter uncertainty. Math. Financ. Econ. 3, 13–38 (2010)

    Google Scholar 

  16. Delbaen, F., Schachermayer, W.: A general version of the fundamental theorem of asset pricing. Math. Ann. 300, 463–520 (1994)

    Google Scholar 

  17. Delbaen, F., Schachermayer, W.: The fundamental theorem of asset pricing for unbounded stochastic processes. Math. Ann. 312, 215–250 (1998)

    Google Scholar 

  18. Fontana, C.: Weak and strong no-arbitrage conditions for continuous financial markets. Int. J. Theor. Appl. Finance 18, 1550005 (2015)

    Google Scholar 

  19. Fontana, C.: The strong predictable representation property in initially enlarged filtrations under the density hypothesis. Stoch. Process. Appl. 128, 1007–1033 (2018)

    Google Scholar 

  20. Grorud, A., Pontier, M.: Insider trading in a continuous time market model. Int. J. Theor. Appl. Finance 1, 331–347 (1998)

    Google Scholar 

  21. Grorud, A., Pontier, M.: Asymmetrical information and incomplete markets. Int. J. Theor. Appl. Finance 4, 285–302 (2001)

    Google Scholar 

  22. He, S., Wang, J., Yan, J.: Semimartingale Theory and Stochastic Calculus. Kexue Chubanshe (Science Press), Beijing (1992)

    Google Scholar 

  23. Jacod, J.: Grossissement initial, hypothèse (H’), et théorème de Girsanov. In: Jeulin, T., Yor, M. (eds.) Grossissements de Filtrations: Exemples et Applications. Lecture Notes in Mathematics, vol. 1118, pp. 15–35. Springer, Berlin (1985)

    Google Scholar 

  24. Jacod, J., Shiryaev, A.: Limit Theorems for Stochastic Processes, 2nd edn. Springer, Berlin (2003)

    Google Scholar 

  25. Jeulin, T.: Semi-martingales et Grossissement d’une Filtration. Lecture Notes in Mathematics, vol. 833. Springer, Berlin (1980)

    Google Scholar 

  26. Karatzas, I., Kardaras, C.: The numéraire portfolio in semimartingale financial models. Finance Stoch. 11, 447–493 (2007)

    Google Scholar 

  27. Karatzas, I., Shreve, S.: Methods of Mathematical Finance. Springer, New York (1998)

    Google Scholar 

  28. Kardaras, C., Platen, E.: On the semimartingale property of discounted asset-price processes. Stoch. Process. Appl. 121, 2678–2691 (2011)

    Google Scholar 

  29. La Valle, I.: On cash equivalents and information evaluation in decisions under uncertainty: Part I: Basic theory. J. Am. Stat. Assoc. 63, 252–276 (1968)

    Google Scholar 

  30. Liu, J., Peleg, E., Subrahmanyam, A.: Information, expected utility, and portfolio choice. J. Financ. Quant. Anal. 45, 1221–1251 (2010)

    Google Scholar 

  31. Morris, J.: The logarithmic investor’s decision to acquire costly information. Manag. Sci. 21, 383–391 (1974)

    Google Scholar 

  32. Muraviev, R.: Exponential utility with non-negative consumption. Preprint (2019). Available online at http://arxiv.org/abs/1106.3006

  33. Pikovsky, I., Karatzas, I.: Anticipative portfolio optimization. J. Appl. Probab. 28, 1095–1122 (1996)

    Google Scholar 

  34. Rheinländer, T., Schweizer, M.: On \({L}^{2}\)-projections on a space of stochastic integrals. Ann. Probab. 25, 1810–1831 (1997)

    Google Scholar 

  35. Stricker, C., Yan, J.: Some remarks on the optional decomposition theorem. In: Azéma, J., et al. (eds.) Séminaire de Probabilités XXXII. Lecture Notes in Mathematics, vol. 1686, pp. 56–66. Springer, Berlin (1998)

    Google Scholar 

  36. Stricker, C., Yor, M.: Calcul stochastique dépendant d’un paramètre. Z. Wahrscheinlichkeitstheor. Verw. Geb. 45, 109–133 (1978)

    Google Scholar 

  37. Takaoka, K., Schweizer, M.: A note on the condition of no unbounded profit with bounded risk. Finance Stoch. 18, 393–405 (2014)

    Google Scholar 

  38. Willinger, M.: Risk aversion and the value of information. J. Risk Insur. 56, 320–328 (1989)

    Google Scholar 

Download references

Acknowledgements

The authors are thankful to Albina Danilova, Martin Larsson, Wolfgang Runggaldier, Martin Schweizer and seminar participants at ENSAE ParisTech, ETH Zürich and LSE for fruitful discussions and suggestions on the topic of the present paper. Valuable comments and suggestions by two anonymous referees, an Associate Editor and the Editor are gratefully acknowledged. Huy N. Chau was supported by the “Lendület” grant LP2015-6 of the Hungarian Academy of Sciences and by the NKFIH (National Research, Development and Innovation Office, Hungary) grant KH 126505.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Fontana.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proofs of the results in Sect. 3

Appendix: Proofs of the results in Sect. 3

Proof of Lemma 3.3

Let \((\vartheta ,c)\in \mathcal{A}^{\mathbf{H},k}(v)\). For ease of notation, we set \(V:=V^{v+k,\vartheta ,c}\), \(C:=\int _{0}^{\cdot }c_{u}\,\!\mathrm{d} \kappa _{u}\) and \(\widetilde{C}:=\int _{0}^{\cdot }Z^{\mathbf{H}}_{u}\, \!\mathrm{d}C_{u}\). Integration by parts gives for all \(t\in [0,T]\) that

$$\begin{aligned} Z^{\mathbf{H}}_{t}V_{t} + \widetilde{C}_{t} &= Z^{\mathbf{H}}_{t} \bigl(v+k+(\vartheta \cdot S)_{t}\bigr) - Z^{\mathbf{H}}_{t}C_{t} + \int _{0}^{t}Z^{\mathbf{H}}_{u} \,\! \mathrm{d}C_{u} \\ &= Z^{\mathbf{H}}_{t}\bigl(v+k+(\vartheta \cdot S)_{t}\bigr) - (C _{-}\cdot Z^{\mathbf{H}})_{t}. \end{aligned}$$

Since \(Z^{\mathbf{H}}\in \mathcal{M}_{\text{loc}}(\mathbb{P}, \mathbf{H})\) and \(Z^{\mathbf{H}}S\in \mathcal{M}_{\text{loc}}( \mathbb{P},\mathbf{H})\), this implies that \(Z^{\mathbf{H}}V + \widetilde{C}\) is a sigma-martingale on \((\Omega ,\mathbf{H}, \mathbb{P})\) (see e.g. Fontana [18, Lemma 4.2]). Being nonnegative, it is also a supermartingale. Therefore, since \(V^{v,\vartheta ,c}_{T}\geq 0\) a.s., we get

$$ v+k \geq \mathbb{E}[Z^{\mathbf{H}}_{T}V_{T}+\widetilde{C}_{T}| \mathcal{H}_{0}] \geq \mathbb{E}[kZ^{\mathbf{H}}_{T} + \widetilde{C} _{T}|\mathcal{H}_{0}] $$

so that \(\mathbb{E}[\widetilde{C}_{T}|\mathcal{H}_{0}]\leq v+k(1- \mathbb{E}[Z^{\mathbf{H}}_{T}|\mathcal{H}_{0}])\) a.s. Conversely, let \(C:=\int _{0}^{\cdot }c_{u}\,\!\mathrm{d}\kappa _{u}\) and suppose that

$$ \mathbb{E}\left [\int _{0}^{T}Z^{\mathbf{H}}_{u}\,\!\mathrm{d}C_{u} \bigg|\mathcal{H}_{0}\right ]\leq v+k(1-\mathbb{E}[Z^{\mathbf{H}}_{T}| \mathcal{H}_{0}]) \qquad \text{a.s.} $$

Consider the process \(\widehat{V}=(\widehat{V}_{t})_{t\in [0,T]}\) defined for \(t\in [0,T]\) by

$$\begin{aligned} \widehat{V}_{t} &:= v + Z^{\mathbf{H}}_{t}C_{t} - \int _{0}^{t}Z^{ \mathbf{H}}_{u} \,\! \mathrm{d}C_{u} + \mathbb{E}\bigg[ \int _{0}^{T}Z^{\mathbf{H}}_{u} \,\! \mathrm{d}C_{u}\bigg|\mathcal{H}_{t}\bigg] - \mathbb{E}\bigg[ \int _{0}^{T}Z^{\mathbf{H}}_{u} \,\! \mathrm{d}C_{u}\bigg|\mathcal{H}_{0}\bigg] \\ & \phantom{=::} +k(1-\mathbb{E}[Z^{\mathbf{H}}_{T}|\mathcal{H}_{0}]+\mathbb{E}[Z^{ \mathbf{H}}_{T}|\mathcal{H}_{t}]-Z^{\mathbf{H}}_{t}). \end{aligned}$$

The process \(\widehat{V}\) is well defined as an element of \(\mathcal{M}_{\text{loc}}(\mathbb{P},\mathbf{H})\). Due to Assumption 2.1 (and Proposition 2.5, in the case \(\mathbf{H}= \mathbf{G}\)), there exists \(\psi \in L(S,\mathbf{H})\) such that

$$ \widehat{V}_{t} = Z^{\mathbf{H}}_{t}\bigl(v + (\psi \cdot S)_{t} \bigr) \qquad \text{a.s. for all }t\in [0,T]. $$

The process \(V^{v+k,\psi ,c}=(V^{v+k,\psi ,c}_{t})_{t\in [0,T]}\) associated to the pair \((\psi ,c)\) satisfies

$$\begin{aligned} Z^{\mathbf{H}}_{t}V^{v+k,\psi ,c}_{t} + \int _{0}^{t}Z^{\mathbf{H}} _{u} \,\! \mathrm{d}C_{u} &= v+k +k(\mathbb{E}[Z^{\mathbf{H}}_{T}|\mathcal{H} _{t}]-\mathbb{E}[Z^{\mathbf{H}}_{T}|\mathcal{H}_{0}]) \\ & \phantom{=:}+ \mathbb{E}\bigg[\int _{0}^{T}Z^{\mathbf{H}}_{u} \,\! \mathrm{d}C_{u}\bigg|\mathcal{H}_{t}\bigg] - \mathbb{E}\bigg[\int _{0} ^{T}Z^{\mathbf{H}}_{u} \,\! \mathrm{d}C_{u}\bigg|\mathcal{H}_{0}\bigg] \end{aligned}$$

a.s. for all \(t\in [0,T]\). By construction, we have \(Z^{\mathbf{H}} _{t}V_{t}^{v+k,\psi ,c}\geq 0\) a.s. for all \(t\in [0,T]\) and \(Z^{\mathbf{H}}_{T}V^{v,\psi ,c}_{T}\geq 0\) a.s. Therefore \((\psi ,c)\in \mathcal{A}^{\mathbf{H},k}(v)\), proving that \(c\in \mathcal{C}^{\mathbf{H},k}(v)\). □

Proof of Proposition 3.5

Under the given assumptions, the process \(c^{\mathbf{H}}=(c^{\mathbf{H}}_{t})_{t\in [0,T]}\) satisfies

$$ \mathbb{E}\bigg[\int _{0}^{T}Z^{\mathbf{H}}_{u}c^{\mathbf{H}}_{u}\,\! \mathrm{d}\kappa _{u}\bigg|\mathcal{H}_{0}\bigg]=v+k(1-\mathbb{E}[Z _{T}^{\mathbf{H}}|\mathcal{H}_{0}]) \qquad \text{a.s.} $$

so that \(c^{\mathbf{H}}\in \mathcal{C}^{\mathbf{H},k}(v)\) by Lemma 3.3. Consider an arbitrary consumption process \(c\in \mathcal{C}^{\mathbf{H},k}(v)\). By the Fenchel–Legendre duality (see e.g. Karatzas and Shreve [27, Lemma 3.4.3]), the definitions of the stochastic field \(I\) and of the process \(c^{ \mathbf{H}}\) imply that

$$ U(t,c^{\mathbf{H}}_{t}) - \Lambda ^{\mathbf{H},k}(v)Z^{\mathbf{H}}_{t}c ^{\mathbf{H}}_{t} \geq U(t,c_{t}) - \Lambda ^{\mathbf{H},k}(v)Z^{ \mathbf{H}}_{t}c_{t} \qquad \text{for all }t\in [0,T]. $$

Therefore, it holds that

$$\begin{aligned} \mathbb{E}\bigg[ \int _{0}^{T}U(u,c^{\mathbf{H}}_{u})\,\!\mathrm{d} \kappa _{u} \bigg|\mathcal{H}_{0}\bigg] &\geq \mathbb{E}\bigg[ \int _{0}^{T}U(u,c_{u})\,\!\mathrm{d}\kappa _{u} \bigg|\mathcal{H}_{0}\bigg] \\ & \phantom{=:} + \Lambda ^{\mathbf{H},k}(v) \mathbb{E}\bigg[ \int _{0}^{T} Z^{ \mathbf{H}}_{u}c^{\mathbf{H}}_{u}\,\!\mathrm{d}\kappa _{u} \bigg| \mathcal{H}_{0}\bigg] \\ & \phantom{=:}- \Lambda ^{\mathbf{H},k}(v) \mathbb{E}\bigg[ \int _{0} ^{T}Z^{\mathbf{H}}_{u}c_{u}\,\!\mathrm{d}\kappa _{u} \bigg|\mathcal{H} _{0}\bigg] \\ &\geq \mathbb{E}\bigg[ \int _{0}^{T}U(u,c_{u})\,\!\mathrm{d}\kappa _{u} \bigg|\mathcal{H}_{0}\bigg], \end{aligned}$$

where the last inequality follows from the fact that in view of Lemma 3.3,

$$ \mathbb{E}\bigg[ \int _{0}^{T}Z^{\mathbf{H}}_{u}c^{\mathbf{H}}_{u}\, \!\mathrm{d}\kappa _{u} \bigg|\mathcal{H}_{0}\bigg] = v + k (1- \mathbb{E}[Z^{\mathbf{H}}_{T}|\mathcal{H}_{0}] ) \geq \mathbb{E}\bigg[ \int _{0}^{T}Z^{\mathbf{H}}_{u}c_{u}\,\!\mathrm{d}\kappa _{u} \bigg| \mathcal{H}_{0}\bigg] \qquad \text{a.s.} $$

The result then follows by the arbitrariness of \(c\in \mathcal{C}^{ \mathbf{H},k}(v)\). □

Proof of Corollary 3.8

In view of Proposition 3.5, to compute \(u^{\mathbf{H},k}(v)\), it suffices to find the \(\mathcal{H}_{0}\)-measurable random variable \(\Lambda ^{\mathbf{H},k}(v)\) satisfying (3.3).

(i) If \(U(\omega ,t,x)=\log x \), then \(I(\omega ,t,y) = 1/y\) for all \(y \in (0,+\infty )\). Therefore (3.3) can be explicitly solved and we find

$$ \Lambda ^{\mathbf{H},k}(v) = \frac{\mathbb{E}[\kappa _{T}|\mathcal{H} _{0}]}{v+k(1-\mathbb{E}[Z^{\mathbf{H}}_{T}|\mathcal{H}_{0}])}. $$

By Proposition 3.5, the solution \(c^{\mathbf{H}}=(c^{ \mathbf{H}}_{t})_{t\in [0,T]}\) is therefore given by

$$ c^{\mathbf{H}}_{t} = \frac{1}{\Lambda ^{\mathbf{H},k}(v)Z^{\mathbf{H}} _{t}} = \frac{v+k(1-\mathbb{E}[Z^{\mathbf{H}}_{T}|\mathcal{H}_{0}])}{Z ^{\mathbf{H}}_{t}\,\mathbb{E}[\kappa _{T}|\mathcal{H}_{0}]} \qquad \text{for all }t\in [0,T]. $$

Under the integrability assumption in the corollary, the optimal expected utility \(u^{\mathbf{H},k}(v)\) in (3.4) can be obtained by means of a straightforward computation.

(ii) If \(U(\omega ,t,x)=x^{p}/p\), then \(I(\omega ,t,y) = y^{1/(p-1)}\) for all \(y \in (0,+\infty )\). By Proposition 3.5, the \(\mathcal{H}_{0}\)-measurable random variable \(\Lambda ^{\mathbf{H},k}(v)\) must solve

$$ \mathbb{E}\bigg[ \int _{0}^{T}(Z^{\mathbf{H}}_{u})^{\frac{p}{p-1}} \big( \Lambda ^{\mathbf{H},k}(v) \big)^{\frac{1}{p-1}} \,\! \mathrm{d}\kappa _{u} \bigg| \mathcal{H}_{0} \bigg] = v+k(1-\mathbb{E}[Z ^{\mathbf{H}}_{T}|\mathcal{H}_{0}]). $$

Therefore if \(\mathbb{E}[\int _{0}^{T}(Z^{\mathbf{H}}_{u})^{p/(p-1)}\, \!\mathrm{d}\kappa _{u}|\mathcal{H}_{0}]<+\infty \) a.s., it holds that

$$ \Lambda ^{\mathbf{H},k}(v) = \big(v+k(1-\mathbb{E}[Z^{\mathbf{H}}_{T}| \mathcal{H}_{0}])\big)^{p-1} \mathbb{E}\bigg[ \int _{0}^{T} (Z^{ \mathbf{H}}_{u})^{\frac{p}{p-1}}\,\!\mathrm{d}\kappa _{u} \bigg| \mathcal{H}_{0} \bigg]^{1-p}. $$

By Proposition 3.5, the optimal consumption process \(c ^{\mathbf{H}}=(c^{\mathbf{H}}_{t})_{t\in [0,T]}\) is given by \(c_{t} ^{\mathbf{H}} = (\Lambda ^{\mathbf{H},k}(v) Z^{\mathbf{H}}_{t})^{1/(p-1)} \) for all \(t\in [0,T]\). If

$$ \mathbb{E}\bigg[\int _{0}^{T}(Z^{\mathbf{H}}_{u})^{p/(p-1)}\,\! \mathrm{d}\kappa _{u}\bigg|\mathcal{H}_{0}\bigg]^{1-p} \in L^{1}( \mathbb{P}), $$

the optimal expected utility \(u^{\mathbf{H},k}(v)\) is finite and can be explicitly computed as in (3.5).

(iii) We first show that (3.7) admits an a.s. unique solution for every \(v>v^{\mathbf{H}}_{k}\). Arguing similarly as in Muraviev [32, Theorem 3.2], define the \(\mathcal{H}_{0}\)-measurable function \(g:\Omega \times (0,+\infty ) \rightarrow \mathbb{R}_{+}\) by

$$ g(\lambda ) := \frac{1}{\alpha }\mathbb{E}\bigg[\int _{0}^{T}Z^{ \mathbf{H}}_{u}\bigg(\log \frac{\alpha }{\lambda Z^{\mathbf{H}}_{u}} \bigg)^{+} \,\! \mathrm{d}\kappa _{u}\bigg|\mathcal{H}_{0}\bigg] \qquad \text{for }\lambda \in (0,+\infty ). $$

Note that \(g\) is well defined since

$$ g(\lambda ) = \frac{1}{\alpha }\mathbb{E}\bigg[\int _{0}^{T}Z^{ \mathbf{H}}_{u}\log \bigg(\frac{\alpha }{\lambda Z^{\mathbf{H}}_{u}} \bigg)\mathbf{1}_{\{Z^{\mathbf{H}}_{u}\leq \alpha /\lambda \}} \,\! \mathrm{d}\kappa _{u}\bigg|\mathcal{H}_{0}\bigg] \leq \frac{\mathbb{E}[ \kappa _{T}|\mathcal{H}_{0}]}{\lambda } < +\infty \text{ a.s.} $$

Clearly, \(g\) is a decreasing function. Furthermore, dominated convergence implies that \(g\) is continuous. Again by dominated convergence, we get \(\lim _{\lambda \rightarrow +\infty }g( \lambda )=0\) a.s., and a straightforward application of Fatou’s lemma yields that \(\lim _{\lambda \downarrow 0}g(\lambda )=+\infty \) a.s. Moreover, for all \(0<\lambda '<\lambda <+\infty \), it holds that \(g(\lambda ')>g( \lambda )\) a.s. on \(\{g(\lambda )>0\}\). Indeed, if the \(\mathcal{H}_{0}\)-measurable set \(G_{\lambda ,\lambda '}:=\{g( \lambda )=g(\lambda '),g(\lambda )>0\}\) has strictly positive probability, then it holds on that set that

$$ \mathbb{E}\bigg[\int _{0}^{T}Z^{\mathbf{H}}_{u}\bigg(\Big(\log \frac{ \alpha }{\lambda ' Z^{\mathbf{H}}_{u}}\Big)^{+}-\Big(\log \frac{ \alpha }{\lambda Z^{\mathbf{H}}_{u}}\Big)^{+}\bigg) \,\! \mathrm{d}\kappa _{u}\bigg|\mathcal{H}_{0}\bigg] = 0. $$

However, since \(\log (\alpha /(\lambda 'Z^{\mathbf{H}}_{u}))>\log ( \alpha /(\lambda Z^{\mathbf{H}}_{u}))\) for all \(u\in [0,T]\), this contradicts the assumption that \(g(\lambda )>0\). In view of these observations,

$$ v+k\bigl(1-\mathbb{E}[Z^{\mathbf{H}}_{T}|\mathcal{G}_{0}](\omega ) \bigr)\in \{g(\lambda )(\omega ):\lambda \in (0,+\infty )\} $$

for a.a. \(\omega \in \Omega \). Therefore, by Benes̆ [10, Lemma 1], (3.7) admits a unique strictly positive \(\mathcal{H}_{0}\)-measurable solution \(\Lambda ^{\mathbf{H},k}(v)\) for every \(v>v^{\mathbf{H}}_{k}\). If \(U( \omega ,t,x)=-e^{-\alpha x}\), then \(I(\omega ,t,y)=(1/\alpha )( \log (\alpha /y))^{+}\) for all \(y\in (0,+\infty )\). By Proposition 3.5, the optimal consumption process \(c^{\mathbf{H}}=(c ^{\mathbf{H}}_{t})_{t\in [0,T]}\) is given by

$$ c^{\mathbf{H}}_{t}=\frac{1}{\alpha }\bigg(\log \frac{\alpha }{ \Lambda ^{\mathbf{H},k}(v)Z^{\mathbf{H}}_{t}}\bigg)^{+} $$

for all \(t\in [0,T]\), thus proving (3.6). □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chau, H.N., Cosso, A. & Fontana, C. The value of informational arbitrage. Finance Stoch 24, 277–307 (2020). https://doi.org/10.1007/s00780-020-00418-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-020-00418-3

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation