Skip to main content
Log in

Trading strategies generated pathwise by functions of market weights

  • Published:
Finance and Stochastics Aims and scope Submit manuscript

Abstract

Twenty years ago, E.R. Fernholz introduced the notion of “functional generation” to construct a variety of portfolios solely in terms of the individual companies’ market weights. I. Karatzas and J. Ruf recently developed another approach to the functional construction of portfolios which leads to very simple conditions for strong relative arbitrage with respect to the market. Here, both of these notions are generalized in a pathwise, probability-free setting; portfolio-generating functions, possibly less smooth than twice differentiable, involve the current market weights as well as additional bounded-variation functionals of past and present market weights. This leads to a wider class of functionally generated portfolios than was heretofore possible to analyze, to novel methods for dealing with the “size” and “momentum” effects, and to improved conditions for outperforming the market portfolio over suitable time horizons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Cont, R.: Functional Itô calculus and functional Kolmogorov equations. In: Utzet, F., Vives, J. (eds.) Stochastic Integration by Parts and Functional Itô Calculus. Advanced Courses in Mathematics—CRM Barcelona, pp. 115–201. Birkhäuser, Basel (2016)

    Google Scholar 

  2. Cont, R., Fournié, D.A.: Functional Itô calculus and stochastic integral representation of martingales. Ann. Probab. 41, 109–133 (2013)

    Google Scholar 

  3. Cont, R., Perkowski, N.: Pathwise integration and change of variable formulas for continuous paths with arbitrary regularity. Trans. Am. Math. Soc. 6, 161–186 (2019)

    Google Scholar 

  4. Davis, M., Obłój, J., Siorpaes, P.: Pathwise stochastic calculus with local times. Ann. Inst. Henri Poincaré Probab. Stat. 54, 1–21 (2018)

    Google Scholar 

  5. Dupire, B.: Functional Itô calculus. Bloomberg Portfolio Research Paper 2009-04 (2009). Available online at: https://doi.org/10.2139/ssrn.1435551

  6. Ekren, I., Keller, C., Touzi, N., Zhang, J.: On viscosity solutions of path dependent PDEs. Ann. Probab. 42, 204–236 (2014)

    Google Scholar 

  7. Ekren, I., Touzi, N., Zhang, J.: Viscosity solutions of fully nonlinear parabolic path dependent PDEs: part I. Ann. Probab. 44, 1212–1253 (2016)

    Google Scholar 

  8. Ekren, I., Touzi, N., Zhang, J.: Viscosity solutions of fully nonlinear parabolic path dependent PDEs: part II. Ann. Probab. 44, 2507–2553 (2016)

    Google Scholar 

  9. Fernholz, E.R.: Stochastic Portfolio Theory. Springer, New York (2002)

    Google Scholar 

  10. Fernholz, E.R., Karatzas, I., Ruf, J.: Volatility and arbitrage. Ann. Appl. Probab. 28, 378–417 (2018)

    Google Scholar 

  11. Fernholz, R.: Portfolio generating functions. In: Avellaneda, M. (ed.) Quantitative Analysis in Financial Markets, pp. 344–367. World Scientific, Singapore (1999)

    Google Scholar 

  12. Fernholz, R., Karatzas, I.: Stochastic portfolio theory: an overview. In: Bensoussan, A. (ed.) Handbook of Numerical Analysis, Mathematical Modeling and Numerical Methods in Finance, pp. 89–167. Elsevier, Amsterdam (2009)

    Google Scholar 

  13. Föllmer, H.: Calcul d’Itô sans probabilités. In: Azéma, J., Yor, M. (eds.) Séminaire de Probabilités, XV. Lecture Notes in Mathematics, vol. 850, pp. 143–150. Springer, Berlin (1981)

    Google Scholar 

  14. Karatzas, I., Ruf, J.: Trading strategies generated by Lyapunov functions. Finance Stoch. 21, 753–787 (2017)

    Google Scholar 

  15. Kim, D.: Local times for continuous paths of arbitrary regularity. Preprint (2019). Available online at: https://arxiv.org/abs/1904.07327

  16. Leão, D., Ohashi, A.: Weak approximations for Wiener functionals. Ann. Appl. Probab. 23, 1660–1691 (2013)

    Google Scholar 

  17. Leão, D., Ohashi, A., Simas, A.B.: Weak differentiability of Wiener functionals and occupation times. Bull. Sci. Math. 149, 23–65 (2018)

    Google Scholar 

  18. Leão, D., Ohashi, A., Simas, A.B.: A weak version of path-dependent functional Itô calculus. Ann. Probab. 46, 3399–3441 (2018)

    Google Scholar 

  19. Perkowski, N., Prömel, D.: Local times for typical price paths and pathwise Tanaka formulas. Electron. J. Probab. 20, 1–15 (2015)

    Google Scholar 

  20. Ruf, J., Xie, K.: Generalised Lyapunov functions and functionally generated trading strategies. Appl. Math. Finance (2019, forthcoming). Available online at: https://doi.org/10.1080/1350486X.2019.1584041

  21. Schied, A., Speiser, L., Voloshchenko, I.: Model-free portfolio theory and its functional master formula. SIAM J. Financ. Math. 9, 1074–1101 (2018)

    Google Scholar 

  22. Sondermann, D.: Introduction to Stochastic Calculus for Finance. A New Didactic Approach. Lecture Notes in Economics and Mathematical Systems, vol. 579 (2006)

    Google Scholar 

  23. Strong, W.: Generalizations of functionally generated portfolios with applications to statistical arbitrage. SIAM J. Financ. Math. 5, 472–492 (2014)

    Google Scholar 

  24. Strong, W.: Fundamental theorems of asset pricing for piecewise semimartingales of stochastic dimension. Finance Stoch. 18, 487–514 (2014)

    Google Scholar 

  25. Würmli, M.: Lokalzeiten für Martingale, Diploma Thesis. ETH Zürich (1980). Unpublished

Download references

Acknowledgements

We are very grateful to the referees, the Associate Editor and the Co-Editor for calling our attention to a serious conceptual error in an earlier version of this paper, as well as for their many and constructive comments which helped us improve drastically the quality of this work. We thank also Drs. Robert Fernholz, Johannes Ruf and Rama Cont for many discussions and suggestions. Research supported in part by the National Science Foundation under grant NSF-DMS-14-05210.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ioannis Karatzas.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Proofs

Appendix: Proofs

Proof of Proposition 3.9

We follow the argument in [14, Proposition 4.8], using the pathwise Itô formula instead of the standard Itô formula for semimartingales. With

$$ K(t) := \exp \bigg(\int _{0}^{t} \frac{d\Gamma ^{G}(s)}{G(\mu (s), A(s))}\bigg) $$
(A.1)

in (3.23), the pathwise Itô formula (Proposition 2.2) yields

$$\begin{aligned} G\big(\mu (t), A(t)\big)K(t) &= G\big(\mu (0), A(0)\big)K(0) +\int _{0}^{t}\sum _{i=1}^{d}\partial _{i}G\big(\mu (s), A(s)\big)K(s)d\mu _{i}(s) \\ & \phantom{=:}+\int _{0}^{t}K(s)d\Gamma ^{G}(s) +\int _{0}^{t}\sum _{i=0} ^{m}D_{i}G\big(\mu (s), A(s)\big)K(s)dA_{i}(s) \\ & \phantom{=:}+\frac{1}{2}\int _{0}^{t}\sum _{i=1}^{d}\sum _{j=1}^{d} \partial _{i, j}^{2}G\big(\mu (s), A(s)\big)K(s)d[\mu _{i}, \mu _{j}](s) \\ &=G\big(\mu (0), A(0)\big)K(0) + \int _{0}^{t}\sum _{i=1}^{d}\partial _{i}G\big(\mu (s), A(s)\big)K(s)d\mu _{i}(s) \\ &=G\big(\mu (0), A(0)\big)K(0) + \int _{0}^{t}\sum _{i=1}^{d}\eta _{i}(s)d \mu _{i}(s) \\ &=G\big(\mu (0), A(0)\big)K(0) + \int _{0}^{t}\sum _{i=1}^{d}\psi _{i}(s)d \mu _{i}(s). \end{aligned}$$

Here, the second equality uses the expression in (3.4) and the last equality relies on [14, Proposition 2.3]. Since (3.23) holds at time zero, it follows that (3.23) holds at any time \(t \in [0, T]\). The justification for (3.24) is exactly the same as that of [14, Proposition 4.8]. □

Proof of Theorem 3.10

For any absolutely continuous function \(f\) with a right-continuous Radon–Nikodým derivative \(f'\) of finite variation and any two real numbers \(a\) and \(b\), applying integration by parts with the notation (2.3) gives

(A.2)

We then recall (3.5), (3.6), (A.1) and consider the telescoping expansion

$$\begin{aligned} &G\big(\mu (t), A(t)\big)K(t) - G\big(\mu (0), A(0)\big)K(0) \\ &=\sum _{i=1}^{d} \sum _{{\scriptstyle t_{j} \in \mathbb{T}_{n} \atop\scriptstyle t_{j} \leq t}} \Big( f _{i}\big(X_{i}(t_{j+1})\big)K(t_{j+1}) - f_{i}\big(X_{i}(t_{j})\big)K(t _{j}) \Big) \\ &=\sum _{i=1}^{d} \sum _{{\scriptstyle t_{j} \in \mathbb{T}_{n} \atop\scriptstyle t_{j} \leq t}} f_{i} \big(X_{i}(t_{j+1})\big)\big(K(t_{j+1})-K(t_{j})\big) \end{aligned}$$
(A.3)
$$\begin{aligned} & \phantom{=:}+\sum _{i=1}^{d} \sum _{{\scriptstyle t_{j} \in \mathbb{T}_{n} \atop\scriptstyle t_{j} \leq t}} \Big( f _{i}\big(X_{i}(t_{j+1})\big) - f_{i}\big(X_{i}(t_{j})\big) \Big) K(t _{j}) . \end{aligned}$$
(A.4)

Then we further expand the last double sum (A.4) as

(A.5)
$$\begin{aligned} & \phantom{=:} -\sum _{i=1}^{d} \sum _{{\scriptstyle t_{j} \in \mathbb{T}_{n} \atop\scriptstyle t_{j} \leq t}} f'_{i}\big(X_{i}(t_{j})\big)K(t_{j}) \big(A_{i}(t_{j+1}) - A _{i}(t_{j})\big) \end{aligned}$$
(A.6)
$$\begin{aligned} & \phantom{=:} +\sum _{i=1}^{d} \sum _{{\scriptstyle t_{j} \in \mathbb{T}_{n} \atop\scriptstyle t_{j} \leq t}} K(t_{j}) \int _{\mathbb{R}} \big(L^{X_{i}, \mathbb{T}_{n}} _{t_{j+1}}(x)-L^{X_{i}, \mathbb{T}_{n}}_{t_{j}}(x)\big) df'_{i}(x), \end{aligned}$$
(A.7)

where the first equation is from (A.2), and the second follows from (3.5) and (2.4).

Next, we show that the sum of (A.3), (A.6) and (A.7) vanishes as \(n \rightarrow \infty \). First, since \(\lim _{n \rightarrow \infty } \Vert {\mathbb{T}}_{n}\Vert =0\), the limit of (A.3) is a Lebesgue–Stieltjes integral

$$ \sum _{i=1}^{d} \int _{0}^{t} f_{i}\big(X_{i}(s)\big)dK(s) = \int _{0} ^{t} G\big(\mu (s), A(s)\big)dK(s), $$

because \(f_{i}(X_{i}(\cdot ))\) is bounded on the compact interval \([0, T]\) for each \(i=1, \dots , d\). From (3.11), the change-of-variable formula for Lebesgue–Stieltjes integrals gives

$$\begin{aligned} \int _{0}^{t} G\big(\mu (s), A(s)\big)dK(s) = \int _{0}^{t} K(s)d\Gamma ^{G}(s) = \int _{0}^{t} K(s) \big( d\Gamma _{1}^{G}(s) - d\Gamma _{2} ^{G}(s) \big), \end{aligned}$$
(A.8)

where

$$ \Gamma ^{G}_{1}(t) := \sum _{i=1}^{d} \int _{0}^{t} \vartheta _{i}(s)dA _{i}(s), \qquad \Gamma ^{G}_{2}(t) := \sum _{i=1}^{d} \int _{\mathbb{R}} L_{t}^{X_{i}}(x)df'_{i}(x). $$

It follows that the limit of (A.6) is \(-\sum _{i=1}^{d} \int _{0}^{t} K(s)\vartheta _{i}(s)dA_{i}(s)\). On the other hand, the last integral of (A.8) can be expressed as the limit

$$\begin{aligned} \int _{0}^{t} K(s)d\Gamma _{2}^{G}(s) &= \lim _{n \rightarrow \infty } \sum _{{\scriptstyle t_{j} \in \mathbb{T}_{n} \atop\scriptstyle t_{j} \leq t}} K(t_{j}) \big( \Gamma _{2}^{G}(t_{j+1}) - \Gamma _{2}^{G}(t_{j}) \big) \\ &=\lim _{n \rightarrow \infty } \sum _{i=1}^{d} \sum _{{\scriptstyle t_{j} \in \mathbb{T}_{n} \atop\scriptstyle t_{j} \leq t}} K(t_{j}) \int _{\mathbb{R}} \big(L_{t_{j+1}}^{X_{i}}(x)-L_{t_{j}}^{X_{i}}(x) \big) df'_{i}(x), \end{aligned}$$

which coincides with the limit of (A.7). Therefore, the limits of (A.3), (A.6) and (A.7) are zero, whereas the remaining term of (A.4) is (A.5), whose limit we denote as

$$ \sum _{i=1}^{d} \int _{0}^{t} f'_{i}\big(X_{i}(s)\big)K(s) d\mu _{i}(s) = \sum _{i=1}^{d} \int _{0}^{t} \eta _{i}(s) d\mu _{i}(s), $$

from (3.6) and (3.21). We obtain in this way that

$$\begin{aligned} G\big(\mu (t), A(t)\big)K(t) - G\big(\mu (0), A(0)\big)K(0) &= \sum _{i=1}^{d} \int _{0}^{t} \eta _{i}(s) d\mu _{i}(s) \\ &=\sum _{i=1}^{d} \int _{0}^{t} \psi _{i}(s) d\mu _{i}(s), \end{aligned}$$

where the last equality follows from \(\sum _{i=1}^{d} \mu _{i}(\cdot ) \equiv 1\) and (3.22). The result (3.23) then follows from the self-financibility of \(\psi \) and the relationship

$$ V^{\psi }(0) = \sum _{i=1}^{d} \psi _{i}(0)\mu _{i}(0) = \sum _{i=1}^{d} \big(\vartheta _{i}(0)-C(0)\big) \mu _{i}(0) = G\big(\mu (0), A(0) \big)K(0). $$

Finally, (3.24) can be justified in the same manner as Proposition 3.9. □

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karatzas, I., Kim, D. Trading strategies generated pathwise by functions of market weights. Finance Stoch 24, 423–463 (2020). https://doi.org/10.1007/s00780-019-00414-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00780-019-00414-2

Keywords

Mathematics Subject Classification (2010)

JEL Classification

Navigation