Skip to main content
Log in

Weierstrass semigroup at \(m+1\) rational points in maximal curves which cannot be covered by the Hermitian curve

  • Published:
Designs, Codes and Cryptography Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

We determine the Weierstrass semigroup \(H(P_\infty ,P_1,\ldots ,P_m)\) at several rational points on the maximal curves which cannot be covered by the Hermitian curve introduced in Tafazolian et al. (J Pure Appl Algebra 220(3):1122–1132, 2016). Furthermore, we present some conditions to find pure gaps. We use this semigroup to obtain AG codes with better relative parameters than comparable one-point AG codes arising from these curves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bartoli D., Masuda A.M., Montanucci M., Quoos L.: Pure gaps on curves with many rational places. Finite Fields Appl. 53, 287–308 (2018). https://doi.org/10.1016/j.ffa.2018.07.001.

    Article  MathSciNet  MATH  Google Scholar 

  2. Bartoli D., Montanucci M., Zini G.: AG codes and AG quantum codes from GGS curves. Des. Codes Cryptogr. 86(10), 2315–2344 (2018).

    Article  MathSciNet  Google Scholar 

  3. Bartoli D., Montanucci M., Zini G.: Multi-point AG codes on the GK maximal curve. Des. Codes Cryptogr. 86(1), 161–177 (2018).

    Article  MathSciNet  Google Scholar 

  4. Beelen P., Montanucci M.: A new family of maximal curves. J. Lond. Math. Soc. 98, 573–592 (2018).

    Article  MathSciNet  Google Scholar 

  5. Bras-Amorós M.: On numerical semigroups and the redundancy of improved codes correcting generic errors. Des. Codes Cryptogr. 53(2), 111–118 (2009). https://doi.org/10.1007/s10623-009-9297-8.

    Article  MathSciNet  MATH  Google Scholar 

  6. Bras-Amorós M., O’Sullivan M.E.: The correction capability of the Berlekamp-Massey-Sakata algorithm with majority voting. Appl. Algebra Energy Commun. Comput. 17(5), 315–335 (2006). https://doi.org/10.1007/s00200-006-0015-8.

    Article  MathSciNet  MATH  Google Scholar 

  7. Bras-Amorós M., Lee K., Vico-Oton A.: New lower bounds on the generalized Hamming weights of AG codes. IEEE Trans. Inform. Theory 60(10), 5930–5937 (2014). https://doi.org/10.1109/TIT.2014.2343993.

    Article  MathSciNet  MATH  Google Scholar 

  8. Campillo A., Farrán J.I.: Computing Weierstrass semigroups and the Feng-Rao distance from singular plane models. Finite Fields Appl. 6(1), 71–92 (2000). https://doi.org/10.1006/ffta.1999.0266.

    Article  MathSciNet  MATH  Google Scholar 

  9. Campillo A., Farrán J.I., Munuera C.: On the parameters of algebraic-geometry codes related to Arf semigroups. IEEE Trans. Inform. Theory 46(7), 2634–2638 (2000). https://doi.org/10.1109/18.887872.

    Article  MathSciNet  MATH  Google Scholar 

  10. Carvalho C., Torres F.: On Goppa codes and Weierstrass gaps at several points. Des. Codes Cryptogr. 35(2), 211–225 (2005).

    Article  MathSciNet  Google Scholar 

  11. Castellanos A.S., Tizziotti G.: Two-points AG codes on the GK maximal curves. IEEE Trans. Inform. Theory 62(9), 4867–4872 (2016). https://doi.org/10.1109/TIT.2015.2511787.

    Article  MathSciNet  MATH  Google Scholar 

  12. Castellanos A.S., Tizziotti G.: Weierstrass semigroup and pure gaps at several points on the GK curve. Bull. Braz. Math. Soc. (N.S.) 49(2), 419–429 (2018). https://doi.org/10.1007/s00574-017-0059-3.

    Article  MathSciNet  MATH  Google Scholar 

  13. Duursma I.M., Park S.: Delta sets for divisors supported in two points. Finite Fields Appl. 18(5), 865–885 (2012). https://doi.org/10.1016/j.ffa.2012.06.005.

    Article  MathSciNet  MATH  Google Scholar 

  14. Fanali S., Giulietti M.: One-point AG codes on the GK maximal curves. IEEE Trans. Inform. Theory 56(1), 202–210 (2010).

    Article  MathSciNet  Google Scholar 

  15. Farrán J.I., Munuera C.: Goppa-like bounds for the generalized Feng-Rao distances. Discret. Appl. Math. 128(1), 145–156 (2003). https://doi.org/10.1016/S0166-218X(02)00441-9. International Workshop on Coding and Cryptography (WCC 2001) (Paris)

  16. Feng G.L., Rao T.R.N.: A simple approach for construction of algebraic-geometric codes from affine plane curves. IEEE Trans. Inform. Theory 40(4), 1003–1012 (1994). https://doi.org/10.1109/18.335972.

    Article  MathSciNet  MATH  Google Scholar 

  17. Fuhrmann R., Garcia A., Torres F.: On maximal curves. J. Number Theory 67(1), 29–51 (1997).

    Article  MathSciNet  Google Scholar 

  18. Fulton W.: Algebraic curves. An introduction to algebraic geometry. W. A. Benjamin Inc., New York-Amsterdam (1969). Notes written with the collaboration of Richard Weiss, Mathematics Lecture Notes Series

  19. Garcia A., Stichtenoth H.: A maximal curve which is not a galois subcover of the hermitian curve. Bull. Braz. Math. Soc. (N.S.) 37(1), 139–152 (2006).

    Article  MathSciNet  Google Scholar 

  20. Garcia A., Güneri C., Stichtenoth H.: A generalization of the giulietti-korchmáros maximal curve. Adv. Geom. 10(3), 427–434 (2010).

    Article  MathSciNet  Google Scholar 

  21. Geil O., Matsumoto R.: Bounding the number of \(\mathbb{F}_q\)-rational places in algebraic function fields using Weierstrass semigroups. J. Pure Appl. Algebra 213(6), 1152–1156 (2009). https://doi.org/10.1016/j.jpaa.2008.11.013.

    Article  MathSciNet  MATH  Google Scholar 

  22. Giulietti M., Korchmáros G.: A new family of maximal curves over a finite field. Math. Ann. 343, 229–245 (2009).

    Article  MathSciNet  Google Scholar 

  23. Goppa V.D.: Codes on algebraic curves. Dokl. Akad. NAUK SSSR 259, 1289–1290 (1981).

    MathSciNet  MATH  Google Scholar 

  24. Goppa V.D.: Algebraic-geometric codes. Izv. Akad. NAUK SSSR 46, 75–91 (1982).

    MathSciNet  MATH  Google Scholar 

  25. Heijnen P., Pellikaan R.: Generalized Hamming weights of \(q\)-ary Reed-Muller codes. IEEE Trans. Inform. Theory 44(1), 181–196 (1998). https://doi.org/10.1109/18.651015.

    Article  MathSciNet  MATH  Google Scholar 

  26. Høholdt T., van Lint J.H., Pellikaan R.: Algebraic geometry codes. In: Handbook of coding theory, Vol. I, II, pp. 871–961. North-Holland, Amsterdam (1998).

  27. Homma M., Kim S.J.: Goppa codes with Weierstrass pairs. J. Pure Appl. Algebra 162(2–3), 273–290 (2001).

    Article  MathSciNet  Google Scholar 

  28. Hu C., Yang S.: Multi-point codes from GGS curves. Adv. Math. Commun. 14, 279 (2020). https://doi.org/10.3934/amc2020020.

    Article  MATH  Google Scholar 

  29. Kirfel C., Pellikaan R.: The minimum distance of codes in an array coming from telescopic semigroups. IEEE Trans. Inform. Theory 41(6 part I), 1720–1732 (1995). https://doi.org/10.1109/18.476245.

    Article  MathSciNet  MATH  Google Scholar 

  30. Korchmáros G., Torres F.: On the genus of a maximal curve. Math. Ann. 323(3), 589–608 (2002).

    Article  MathSciNet  Google Scholar 

  31. Lachaud G.: Sommes d’Eisenstein et nombre de points de certaines courbes algébriques sur les corps finis. CR. Acad. Sci 305, 729–732 (1987).

    MATH  Google Scholar 

  32. Matthews G.L.: The Weierstrass semigroup of an \(m\)-tuple of collinear points on a Hermitian curve. In: Finite fields and applications, Lecture Notes in Comput. Sci., Vol. 2948, pp. 12–24. Springer, Berlin (2004)

  33. Pellikaan R., Torres F.: On Weierstrass semigroups and the redundancy of improved geometric Goppa codes. IEEE Trans. Inform. Theory 45(7), 2512–2519 (1999). https://doi.org/10.1109/18.796393.

    Article  MathSciNet  MATH  Google Scholar 

  34. Pellikaan R., Stichtenoth H., Torres F.: Weierstrass semigroups in an asymptotically good tower of function fields. Finite Fields Appl. 4(4), 381–392 (1998).

    Article  MathSciNet  Google Scholar 

  35. Schmid W.C., Schürer R.: MinT. http://mint.sbg.ac.at/

  36. Tafazolian S., Teherán-Herrera A., Torres F.: Further examples of maximal curves which cannot be covered by the Hermitian curve. J. Pure Appl. Algebra 220(3), 1122–1132 (2016). https://doi.org/10.1016/j.jpaa.2015.08.010.

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The first author was supported by Fundação de amparo a pesquisa de Minas Gerais under Grant FAPEMIG APQ-00696-18. The second author was supported by the Spanish government under Grant TIN2016-80250-R and by the Catalan government under Grant 2017 SGR 00705.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maria Bras-Amorós.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This is one of several papers published in Designs, Codes and Cryptography comprising the “Special Issue on Codes, Cryptology and Curves”.

Appendices

Appendix A: genus of S

In this section we will determine the genus of the semigroup S generated by \(\{q^3+1-iN-j:0\le i+j\le p^b\},\) with \(q=(p^b)^r\), for a prime number p, some positives integers br, with \(r\ge 2\), and \(N=\frac{q^3+1}{q+1}\).

For this purpose we will first consider the numerical semigroup \(S_{P,N,K}\) generated by \(\{KN+aN-j:0\le j\le a\le P\}\), where P, N, K are positive integers with \(P\mid N-1\), \(P\mid K-1\), \(K<N\). Notice that \(S=S_{P,N,K}\) with \(K=q+1-p^b\) and \(P=p^b\), with a playing the role of \(p^b-i\), and jN playing their own role. The required conditions hold, indeed, \(P\mid N-1\) since \(N-1=\frac{q^3+1}{q+1}-1=(q^2-q+1)-1=q^2-q\) and, similarly, \(P\mid K-1\).

1.1 A.1 Characterization

With the same notation as before, for an integer \(M\ge 0\), let \(S^M_{P,N,K}=\{MKN+aN-j:0\le j\le a\le MP\}\) and let \(\widetilde{S}^M_{P,N,K}=\{MKN+aN-j: \max \{0,(M-1)P-K+1\}\le a \le MP, 0\le j\le \min \{a,N-1\}\}\). It is obvious that \(S_{P,N,K}=\cup _{M\ge 0} S^M_{P,N,K}\) and that \(\widetilde{S}^M_{P,N,K}\subseteq S^M_{P,N,K}\). Now, any element in \(S^M_{P,N,K}\) is in at least one set \(\widetilde{S}^{M'}_{P,N,K}\) for some \(M'\le M\). This can be proved by induction on M. For \(M=0\) and for \(M=1\) it is straightforward. For \(M>1\), suppose that an element of \(S^M_{P,N,K}\) is \(\ell =MKN+aN-j\) for some particular \(0\le j\le a\le MP\). If \(a\ge (M-1)P-K+1\) and \(j\le N-1\) then \(\ell \in \widetilde{S}^M_{P,N,K}\). Otherwise, if \(0\le a<(M-1)P-K+1\), then \(\ell =(M-1)KN+(K+a)N-j=(M-1)KN+a'-j\) with \(a'=K+a\le (M-1)P\) and \(0\le j\le a\le a'\), so \(\ell \in S^{M-1}_{P,N,K}\) and the result follows by induction. If \(a\ge (M-1)P-K+1\) but \(j>N-1\), then suppose that Q is the quotient of the division of j by N. Then \(\ell =MKN+(a-Q)N-(j-QN)=MKN+a'-j'\) with \(a'=a-Q \ge a-j \ge 0\), and \(a'\le a\le MP\). Furthermore, \(j'=j-QN\), which is the remainder of the division of j by N, and which is between 0 and \(N-1\). So, \(\ell \in \widetilde{S}^M_{P,N,K}\). Consequently, we also have \(S_{P,N,K}=\cup _{M\ge 0} \widetilde{S}^M_{P,N,K}\).

Now, \(\widetilde{S}^M_{P,N,K}\subseteq [(M-1)(K+P)N+1,M(K+P)N]\). Indeed, the minimum of \(\widetilde{S}^M_{P,N,K}\) is at least \((M-1)(KN+PN)+1\) since the elements in \(\widetilde{S}^M_{P,N,K}\) satisfy \(MKN+aN-j\ge MKN+((M-1)P-K+1)N-N+1=MKN+MPN-PN-KN+N-N+1=(M-1)(K+P)N+1\). On the other hand, the maximum of \(\widetilde{S}^M_{P,N,K}\) is at most \(M(K+P)N\) since the elements in \(\widetilde{S}^M_{P,N,K}\) satisfy \(MKN+aN-j\le MKN+MPN-0=M(K+P)N\).

In particular, the sets \(\widetilde{S}^M_{P,N,K}\) are disjoint and, so, \(S_{P,N,K}=\sqcup _{M\ge 0}\widetilde{S}^M_{P,N,K}.\)

Let \(M_0=\frac{K-1}{P}+1\), \(M_1=\frac{N-1}{P}\), \(M_2=\frac{K+N-2}{P}\).

1.2 A.2 Conductor of \(S_{P,N,K}\)

Now we are ready to determine the Frobenius number of \(S_{P,N,K}\), that is, its largest gap. The conductor of \(S_{P,N,K}\) is then the non-gap of \(S_{P,N,K}\) right after its Frobenius number.

Observe that \(\widetilde{S}_M=\cup _{a\ge \max \{0,(M-1)P-K+1\}}I_a\) with \(I_a=\{MKN+aN-j: 0\le j\le \min \{a,N-1\}\}\). Since j ranges from 0 to \(\min \{a,N-1\}\), there are gaps between the intervals \(I_a\) and \(I_{a-1}\) if and only if \(\min \{a,N-1\}<N-1\), i.e., if and only if \(a< N-1\). Since in \(\widetilde{S}^M_{P,N,K}\)a ranges from \(\max \{0,(M-1)P-K+1\}\) to PN, the inequality \(a<N-1\) occurs in \(\widetilde{S}^M_{P,N,K}\) if and only if \((M-1)P-K+1<N-1\), that is, if and only if \(M\le \frac{N+K-2}{P}\).

Let \(M_F= \frac{N+K-2}{P}\). The last gap of \(S_{P,N,K}\) will then be the gap previous to \(I_a\) with \(a=N-2\) in \(\widetilde{S}^{M_F}_{P,N,K}\), that is, the Frobenius number will be \(M_FKN+aN-a-1\) for \(a=N-2\), i.e. \(\frac{K+N-2}{P}KN+(N-2)N-N+1=\frac{K+N-2}{P}KN+N^2-3N+1\).

Simplifying by means of Sage we obtain that the conductor of \(S_{P,N,K}\) is

$$\begin{aligned} c=\frac{N^2K + NK^2 + N^2P - 2NK - 3NP + 2P}{P}. \end{aligned}$$

1.3 A.3 Genus

Let \(M_0=\frac{K-1}{P}+1\), \(M_1=\frac{N-1}{P}\), \(M_2=\frac{K+N-2}{P}=M_0+M_1-1\).

  • If \(0\le M\le M_0\) then \(S_{P,N,K}^M=\widetilde{S}_{P,N,K}^M\) and \(\#\widetilde{S}_{P,N,K}^M=\sum _{a=0}^{MP}(a+1)=\sum _{b=1}^{MP+1} b=\frac{(MP+1)(MP+2)}{2}\).

  • If \(M_0<M\le M_1\) then \(\#\widetilde{S}_{P,N,K}^M=\sum _{a=(M-1)P-K+1}^{MP}(a+1)=\sum _{(M-1)P-K+2}^{MP+1}b=\frac{(MP+1)(MP+2)}{2}-\frac{(MP-P-K+1)(MP-P-K+2)}{2}\). This is because if \(M\le M_1\), then \(MP\le N-1\), so j will always range from 0 to a.

  • If \(M>M_1\) then \(\#([(M-1)(K+P)N+1,M(K+P)N]{\setminus } \widetilde{S}_{P,N,K}^M)=\)\(\sum _{a=(M-1)P-K+1}^{N-2}(N-a-1)=\sum _{b=1}^{N-(M-1)P+K-2}b=\)\(\frac{(N-MP+P+K-2)(N-MP+P+K-1)}{2}\). This is because if \(M>M_1\) then \(MP>N-1\) and so at some point \(a=N-1\). In this case, \([(M-1)(K+P)N+1,M(K+P)N] {\setminus }\widetilde{S}_{P,N,K}^M=\{MKN+aN-j: (M-1)P-K+1 \le a \le N-2, a+1\le j\le N-1\}\).

Now, using the formulas \(\sum _{M=1}^n M=\frac{n(n+1)}{2}\) and \(\sum _{M=1}^n M^2=\frac{n(n+1)(2n+1)}{6}\) we get to the final count of the genus:

$$\begin{aligned} g= & {} (M_1(P+K)N)\\&-\sum _{M=1}^{M_1}\frac{(MP+1)(MP+2)}{2}\\&+\sum _{M=M_0+1}^{M_1}\frac{(MP-P-K+1)(MP-P-K+2)}{2}\\&+\sum _{M=M_1+1}^{M_2}\frac{(N-MP+P+K-2)(N-MP+P+K-1)}{2}\\= & {} (M_1(P+K)N)\\&-\frac{1}{12}P^2M_1(M_1+1)(2M_1+1)-\frac{3}{4}PM_1(M_1+1)-M_1\\&+\frac{1}{12}P^2(M_1(M_1+1)(2M_1+1)-M_0(M_0+1)(2M_0+1))\\&+\frac{1}{4}P(3-2P-2K)(M_1(M_1+1)-M_0(M_0+1))\\&+\frac{1}{2}(P+K-1)(P+K-2)(M_1-M_0)\\&+\frac{1}{12}P^2(M_2(M_2+1)(2M_2+1)-M_1(M_1+1)(2M_1+1))\\&+\frac{1}{4}P(-2(P+K+N)+3)(M_2(M_2+1)-M_1(M_1+1))\\&+\frac{1}{2}(P+K+N-1)(P+K+N-2)(M_2-M_1)\\= & {} \frac{N^2K + NK^2 + N^2P + NKP - 3NK - 3NP + P + 1}{2P} \end{aligned}$$

1.4 A.4 Back to the originary problem

If we take \(N=\frac{q^3+1}{q+1}\), \(K=q+1-p^b\), \(P=p^b\), then the genus is \(g=\frac{q^5 - q^3p^b - q^3 + q^2}{2p^b},\) while the conductor is \(c=\frac{q^5 - 2q^3p^b + q^2p^{2b} - q^2p^b - qp^{2b} + q^2 + qp^b + p^{2b} - p^b}{p^b}.\)

Appendix B: genus of \(S'\)

Suppose we have \(q=p^a\), \(b\mid a\), \(b\ne a\), n odd, \(n\ge 3\). Let \(M=\frac{q^n+1}{q+1}=q^{n-1}-q^{n-2}+q^{n-3}-q^{n-4}+\dots -q+1\). We want to prove that the genus of the semigroup \(S'=\langle q^n+1-iM-j:0\le iM+jq^2\le q^{n-1}p^b \rangle \) is \(\frac{q^{n+2}-p^bq^n-q^3+q^2}{2p^b}\).

1.1 B.1 Definition of \(S'\) revisited

Lemma B.1

If \(n\ge 3\),

$$\begin{aligned} S'=\left\langle k(q^{n-1}-q^{n-2})+\ell :q+1-p^b\le k\le q+1 \text{ and } q^{n-3}(q-p^b) \le \ell \le k\frac{q^{n-2}+1}{q+1} \right\rangle \end{aligned}$$

Equivalently, by setting \(A=q^{n-1}-q^{n-2}\), \(k_0=q+1-p^b\), \(k_1=q+1\), \(\ell _0=q^{n-3}(q-p^b)+1\), \(\ell _1=\frac{q^{n-2}+1}{q+1}\), the semigroup \(S'\) is \(S'=\left\langle kA+\ell : k_0\le k\le k_1, \ell _0 \le \ell \le k\ell _1\right\rangle .\)

Proof

We can rewrite \(S'\) as \(S'=\langle (q+1-i)M-j:0\le iM+jq^2\le q^{n-1}p^b \rangle .\) The integer i is then bounded as \(0\le i\le \lfloor \frac{q^{n-1}p^b}{M}\rfloor \). The quotient and the remainder of the division of \(q^{n-1}p^b\) by M are, respectively, \(p^b\) and \(p^b(q^{n-2}-q^{n-3}+\dots +q-1)\) (since this remainder is between 0 and \(M-1\)). Consequently, \(0\le i\le p^b\). Now, setting \(k=q+1-i\), the bounds for k are \(q-p^b+1\le k\le q+1\). Hence, since \(iM=(q+1-k)M=(q+1)M-kM=q^n+1-kM\),

$$\begin{aligned} S'=\langle kM-j:q-p^b+1\le k\le q+1 \text{ and } 0\le q^n+1-kM+jq^2\le q^{n-1}p^b \rangle \end{aligned}$$

Finally, we want to replace the bounds for \(q^n+1-kM+jq^2\) by bounds on j. Reorganizing them, we obtain

$$\begin{aligned} kM-q^n-1\le jq^2\le kM-q^n+q^{n-1}p^b-1=kM-q^{n-1}(q-p^b)-1. \end{aligned}$$

Since \(k\le q+1\), the lower bound is non-positive. So, \(0\le jq^2\)

As for the upper bound on j, \(j\le \left\lfloor \frac{kM-q^{n-1}(q-p^b)-1}{q^2}\right\rfloor = \left\lfloor \frac{kq^{n-1}-kq^{n-2}+kq^{n-3}-\dots +kq^2-kq+k-q^{n-1}(q-p^b)-1}{q^2}\right\rfloor \)\(= \left\lfloor k\frac{q^{n-2}+1}{q+1}+\frac{-kq+k-1}{q^2}-q^{n-3}(q-p^b)\right\rfloor =\left\lfloor k\frac{q^{n-2}+1}{q+1} -q^{n-3}(q-p^b)-1 +\frac{q^2-k(q-1)-1}{q^2} \right\rfloor \). By the bounds on k we deduce that \(0\le \frac{q^2-k(q-1)-1}{q^2}\le \frac{p^b(q-1)}{q^2}<1\). So,

$$\begin{aligned} S'=\langle kM-j:q+1-p^b\le k\le q+1 \text{ and } 0\le j\le k\frac{q^{n-2}+1}{q+1}-q^{n-3}(q-p^b)-1 \rangle \end{aligned}$$

Let now \(\ell =k\frac{q^{n-2}+1}{q+1}-j\). Notice that \(kM-j=k(M-\frac{q^{n-2}+1}{q+1})+\ell =k(q^{n-1}-q^{n-2})+\ell \). The bounds of \(\ell \) are \(q^{n-3}(q-p^b)+1 \le \ell \le k\frac{q^{n-2}+1}{q+1}\). \(\square \)

Let \(G=\left\{ kA+\ell : k_0\le k\le k_1, \ell _0 \le \ell \le k\ell _1 \right\} \) and let \(mG=\{a_1+\dots +a_m:a_i\in G\}\). Define \(B_m=[(m-1)(q^n+1)+1,m(q^n+1)]\cap mG\).

Lemma B.2

The following statements hold.

  1. (1)

    \(S'=\{0\}\cup \bigcup _{m\ge 1} mG\),

  2. (2)

    \(S'=\{0\}\cup \sqcup _{m\ge 1} B_m\).

Proof

First of all, notice that \(mG=\underbrace{[mk_0A+m\ell _0,mk_0(A+\ell _1)]}_{mk_0\ell _1 -m\ell _0 +1 } \cup \underbrace{[(mk_0+1)A+m\ell _0,(mk_0+1)(A+\ell _1)]}_{(mk_0+1)\ell _1 -m\ell _0 +1 } \cup \dots \cup \underbrace{[mk_1A+m\ell _0,mk_1(A+\ell _1)]}_{mk_1\ell _1-m\ell _0+1}\)

  1. (1)

    The first part is obvious and follows from the definitions.

  2. (2)

    For the second part, it is obvious that the sets \(B_m\) are disjoint and it is obvious the inclusion \(\supseteq \). Let us prove for all m the inclusion \(S'\cap [(m-1)(q^n+1)+1,m(q^n+1)]\subseteq B_m\) by induction on m.

    First of all we need to see that \(S'\cap [1,q^n+1]=B_1\). The smallest element of 2G is \(2(k_0A+\ell _0)= 2((q+1-p^b)(q^{n-1}-q^{n-2})+q^{n-3}(q-p^b)+1)= 2(q^n+1-p^b(q^{n-1}-q^{n-2}+q^{n-3}))\)\(= q^n+1+(q^n+1-2p^b(q^{n-1}-q^{n-2}+q^{n-3})) > q^n+1+(q^n+1-2p^b\frac{q^n+1}{q+1}) \ge q^n+1\) if \(2p^b\le q+1\), which is a consequence of the fact that \(p^b<q\).

    Now suppose \(m>1\). Since the maximum of mG is \(m(q^n+1)\), we have \(mG\subseteq [0,m(q^n+1)]\). Now it will suffice to see that \(mG\cap [0,(m-1)(q^n+1)]\subseteq (m-1)G\) and the result will follow by induction.

    Notice that mG is the union of the sets of the form \(S_{m,\tilde{k}}=[\tilde{k} A+m\ell _0,\tilde{k}(A+\ell _1)]\) for some \(\tilde{k}\) satisfying \(mk_0\le \tilde{k}\le m k_1\), while \((m-1)G\) is the union of sets of the form \(S_{(m-1),\tilde{\tilde{k}}}[\tilde{\tilde{k}} A+m\ell _0,\tilde{\tilde{k}}(A+\ell _1)]\) for some \(\tilde{\tilde{k}}\) satisfying \((m-1)k_0\le \tilde{\tilde{k}}\le (m-1) k_1\). Suppose that \(a\in mG\cap [0,(m-1)(q^n+1)]\). If \(a\in S_{m\tilde{k}}\) with \(mk_0\le \tilde{k}\le (m-1)k_1\), then, since \(S_{m,\tilde{k}}\subseteq S_{m-1,\tilde{k}}\), we have \(a\in S_{m-1,\tilde{k}}\subseteq (m-1)G\). On the other hand, if \(a\in S_{m,\tilde{k}}\cap [0,(m-1)(q^n+1)]\) with \((m-1)k_1<\tilde{k} \le mk_1\), then \(a\ge \tilde{k} A+ m\ell _0 >(m-1)k_1 A +(m-1)\ell _0\). So, \(a\in S_{m-1,(m-1)k_1}\subseteq (m-1)G\). \(\square \)

1.2 B.2 Number of gaps by intervals

Let \(C_m=[(m-1)(q^n+1)+1,m(q^n+1)]{\setminus } B_m\). In this section we wonder what are the elements in \(C_m\). As before, we split the elements in mG into (not necessarily disjoint) blocks of the form \(S_{m,\tilde{k}}=[\tilde{k} A+m\ell _0,\tilde{k}(A+\ell _1)]\) for some \(\tilde{k}\) satisfying \(mk_0\le \tilde{k}\le m k_1\).

Lemma B.3

  1. (1)

    Suppose that \(mk_0< k\le mk_1\). Then the gaps between \(S_{m,(k-1)}\) and \(S_{m,k}\) are contained in \([(m-1)(q^n+1)+1,m(q^n+1)]\) if and only if \( k\ge \max \left( mk_0+1,mq+m-q\right) \)

  2. (2)

    \(\max \left( mk_0+1,mq+m-q\right) =mk_0+1\) if and only if \(m\le M_1:=p^{a-b}\).

Proof

  1. (1)

    Suppose that \(mk_0< k\le mk_1\). Then the gaps between \(S_{m,(k-1)}\) and \(S_{m,k}\) are contained in \([(m-1)(q^n+1)+1,m(q^n+1)]\) if and only if \((k-1)\frac{q^n+1}{q+1}\ge (m-1)(q^n+1)\), that is, if and only if \(k\ge (m-1)(q+1)+1=mq+m-q\).

  2. (2)

    \(\max \left( mk_0+1,mq+m-q\right) =mk_0+1\) if and only if \(mq+m-q\le m(q+1-p^b)+1\), that is, if and only if \(-q\le -mp^b+1\), i.e., \(mp^b\le q+1\). Now observe that the quotient of the Euclidean division of \(q+1\) by \(p^b\) is \(p^{a-b}\) while the remainder is 1. So, the statement follows.\(\square \)

Lemma B.4

  1. (1)

    Suppose that \(mk_0< k\le mk_1\). Then there are gaps between \(S_{m,(k-1)}\) and \(S_{m,k}\) if and only if \(k\le \min \left( mk_1,\frac{q^{n}-q-1+m(q+1)(q^{n-3}(q-p^b)+1)}{q^{n-2}+1}\right) .\)

  2. (2)

    If \(n>3\), \(\min \left( mk_1, \frac{q^{n}-q+m(q+1)(q^{n-3}(q-p^b)+1)}{q^{n-2}+1}\right) =mk_1\) if and only if \(m\le M_2:=(q-1)p^{a-b}\).

  3. (3)

    If \(n=3\), \(\min \left( mk_1, \frac{q^{n}-q+m(q+1)(q^{n-3}(q-p^b)+1)}{q^{n-2}+1}\right) =mk_1\) if and only if \(m\le \tilde{M_2}:=(q-1)p^{a-b}-1\).

Proof

  1. (1)

    Suppose that \(mk_0< k\le mk_1\). Then there are gaps between \(S_{m,( k-1)}\) and \(S_{m, k}\) if and only if \(( k-1)(A+\ell _1)\le k A+m\ell _0-2\), equivalently, \(( k-1)\ell _1\le m\ell _0-2+A\), equivalently, \( k\le \frac{m\ell _0-2+A}{\ell _1}+1= (q+1)\frac{m(q^{n-3}(q-p^b)+1)-2+q^{n-1}-q^{n-2}}{q^{n-2}+1}+1\)\(= \frac{m(q+1)(q^{n-3}(q-p^b)+1)-q-2+q^{n}-q^{n-2}+q^{n-2}+1}{q^{n-2}+1} = \frac{ q^{n} -q-1 +m((q+1)q^{n-3}(q-p^b)+1) }{q^{n-2}+1}\).

  2. (2)

    \(\min \left( mk_1, \frac{q^{n}-q-1+m(q+1)(q^{n-3}(q-p^b)+1)}{q^{n-2}+1}\right) =mk_1\) if and only if \(m(q+1)\le \frac{q^{n}-q-1+m(q+1)(q^{n-3}(q-p^b)+1)}{q^{n-2}+1}\), that is, if and only if \(m(q^{n-1}+q^{n-2}+q+1)\le q^{n}-q-1+m(q+1)(q^{n-3}(q-p^b)+1)\), i.e., \(m(q^{n-1}+q^{n-2}+q+1)\le q^{n}-q-1+m(q^{n-2}(q-p^b)+q^{n-3}(q-p^b)+q+1)\), i.e., \(0\le q^{n}-q-1-mp^b(q+1)q^{n-3}\), i.e., \(m\le \lfloor \frac{q^n-q-1}{p^b(q+1)q^{n-3}}\rfloor \)

    Here we notice that the Euclidean division of \(q^n-q-1\) by \(q^{n-2}p^b+q^{n-3}p^b\) has quotient \((q-1)p^{a-b}\) and remainder \(q^n-q-1-(q-1)p^{a-b}(q^{n-2}p^b+q^{n-3}p^b)= q^n-q-1 -q^{n}-q^{n-1} +q^{n-1}+q^{n-2} = q^{n-2} -q-1 \).

    So, the statement follows.

  3. (3)

    It can be proved as the previous item.\(\square \)

Lemma B.5

If \((q-1)p^{a-b}+1\le m\le qp^{a-b}-1\) then \(\frac{q^{n}-q-1+m(q+1)(q^{n-3}(q-p^b)+1)}{q^{n-2}+1}\) is not an integer and \(\lfloor \frac{q^{n}-q-1+m(q+1)(q^{n-3}(q-p^b)+1)}{q^{n-2}+1} \rfloor =q^2-q+m(q-p^b+1)\).

Proof

\(\frac{q^{n}-q-1+m(q+1)(q^{n-3}(q-p^b)+1)}{q^{n-2}+1}= \frac{q^{n}-q+1}{q^{n-2}+1}+ m\frac{(q+1)(q^{n-3}(q-p^b)+1)}{q^{n-2}+1} \) \(=q^2-\frac{q^2+q+1}{q^{n-2}+1} +m(q-p^b+1)-mp^b\frac{q^{n-3}-1}{q^{n-2}+1}\) \(= q^2-q+m(q-p^b+1)+q-\frac{q^2+q+1}{q^{n-2}+1}-mp^b\frac{q^{n-3}-1}{q^{n-2}+1}. \)

Now, it is enough to see that \(0\le q-\frac{q^2+q+1}{q^{n-2}+1}-mp^b\frac{q^{n-3}-1}{q^{n-2}+1}<1\).

On one hand, \( q-\frac{q^2+q+1}{q^{n-2}+1} - mp^b( \frac{q^{n-3}-1}{q^{n-2}+1}) \ge q- \frac{q^2+q+1}{q^{n-2}+1} -(qp^{a-b}-1)(\frac{(q^{n-3}-1)p^b}{q^{n-2}+1})\)\( = q- \frac{q^2+q+1}{q^{n-2}+1} - \frac{(q^{n-3}-1)q^2-p^{b}(q^{n-3}-1)}{q^{n-2}+1}\)\( = q- \frac{q^2+q+1}{q^{n-2}+1} - \frac{q^{n-1}-q^2-q^{n-3}p^b+p^b}{q^{n-2}+1} = q+ \frac{-q^{n-1}+q^{n-3}p^b-p^b+q+1}{q^{n-2}+1}\)\( = \frac{q+q^{n-3}p^b-p^b+q+1}{q^{n-2}+1} = \frac{2q+p^b(q^{n-3}-1)+1}{q^{n-2}+1} >0\).

On the other hand, \( q- \frac{q^2+q+1}{q^{n-2}+1} - mp^b\frac{q^{n-3}-1}{q^{n-2}+1} \le \frac{q^{n-1}+q-q^2-q-1-(qp^{a-b}-p^{a-b}+1)(q^{n-3}p^b-p^b) }{q^{n-2}+1}\)\(= \frac{q^{n-1}-q^2-1 -qp^{a-b}(q^{n-3}p^b-p^b) +p^{a-b}(q^{n-3}p^b-p^b) -(q^{n-3}p^b-p^b) }{q^{n-2}+1}\)\( = \frac{q^{n-1}-q^2-1 -q^{n-1}+q^2 +q^{n-2}-q -q^{n-3}p^b+p^b }{q^{n-2}+1} = \frac{ -1 +q^{n-2}-q -q^{n-3}p^b+p^b }{q^{n-2}+1}\)\( = \frac{ q^{n-2}+1-(2+q+(q^{n-3}-1)p^b) }{q^{n-2}+1} <1. \)\(\square \)

Lemma B.6

Suppose that \(mk_0< k\le mk_1\). Then the number of gaps between \(S_{m,(k-1)}\) and \(S_{m,k}\) is \(m(q^{n-3}(q-p^b)+1)-{ k}\frac{q^{n-2}+1}{q+1}+\frac{q^n+1}{q+1}-1\).

Proof

The number of gaps between \(S_{m,(k-1)}\) and \(S_{m, k}\) is \(kA+m\ell _0-(k-1)(A+\ell _1)-1= m\ell _0-k\ell _1 +A+\ell _1-1\), which yields the formula in the statement. \(\square \)

Lemma B.7

  1. (1)

    There are gaps that are at least \((m-1)(q^n+1)+1\) and which are smaller than the elements in \(S_{m,mk_0}\) if and only if \(m\le p^{a-b}=M_1\).

  2. (2)

    If \(m\le p^{a-b}=M_1\), then the number of gaps between \((m-1)(q^n+1)+1\) and \(S_{m,mk_0}\) is \(q^n-mp^b(q^{n-1}-q^{n-2}+q^{n-3})\).

Proof

  1. (1)

    There are gaps that are at least \((m-1)(q^n+1)+1\) and which are smaller than the elements in \(S_{m,mk_0}\) if and only if \(mk_0A+m\ell _0\ge (m-1)(q^n+1)+2\). This is equivalent to \(m(q+1-p^b)(q^{n-1}-q^{n-2})+m (q^{n-3}(q-p^b)+1)\ge (m-1)(q^n+1)+2\), that is, if and only if \( mq^n-mq^{n-1}+mq^{n-1}-mq^{n-2}-mq^{n-1}p^b+mq^{n-2}p^b + mq^{n-2}-mq^{n-3}p^b+m \ge mq^n +m -q^n-1 +2\), which is equivalent to \(q^n-1\ge mp^b(q^{n-1}-q^{n-2}+q^{n-3})\) i.e., \(m\le \lfloor \frac{q^n-1}{p^b(q^{n-1}-q^{n-2}+q^{n-3})}\rfloor \).

    Here we remark that the Euclidean division of \(q^n-1\) by \(p^b(q^{n-1}-q^{n-2}+q^{n-3})\) has quotient \(p^{a-b}\) and remainder \(q^n-1-(q^{n}-q^{n-1}+q^{n-2}) =q^{n-1}-q^{n-2}-1\). So, the result follows.

  2. (2)

    It follows from the formula \(mk_0A+m\ell _0-(m-1)(q^n+1)-1\) and a similar simplification as before. \(\square \)

Lemma B.8

Let \(M_3=qp^{a-b}-1\). The set \(C_m\) is not empty if and only if \(m\le M_3\).

Proof

It is clear that for \(m<M_2\), \(C_m\ne \emptyset \). For \(m\ge M_2\), \(C_m\ne \emptyset \) if and only if

$$\begin{aligned} \frac{q^n-q-1+m(q+1)(q^{n-3}(q-p^b)+1)}{q^{n-2}+1}\ge m(q+1)-q. \end{aligned}$$

This is equivalent to \(q^n-q-1+m(q+1)(q^{n-3}(q-p^b)+1-(q^{n-2}+1))\ge -q(q^{n-2}+1)\), which in turn is equivalent to \(q^n-1-m(q+1)(p^bq^{n-3})\ge -q^{n-1}\), i.e., \(m\le \lfloor \frac{(q+1)q^{n-1}-1}{(q+1)p^bq^{n-3}}\rfloor =qp^{a-b}-1\). \(\square \)

Corollary 1

\(S'=\sqcup _{m=1}^{M_3}B_m\)

Theorem 1

The genus of \(S'\) is \(\frac{q^{n+2}-p^bq^n-q^3+q^2}{2p^b}\).

Proof

By Lemmas B.1,  B.2,  B.3,  B.4,  B.5,  B.6,  B.7,  B.8, and Corollary 1, it easily follows that the genus of \(S'\) is

$$\begin{aligned}&\sum _{m=1}^{M_1} \left( q^n-mp^b(q^{n-1}-q^{n-2}+q^{n-3}) \right) \\&\qquad + \sum _{m=1}^{M_1} \sum _{k=mk_0+1}^{mk_1} \left( mq^{n-3}(q-p^b)+m-{k}\frac{q^{n-2}+1}{q+1}+\frac{q^n+1}{q+1}-1\right) \\&\qquad + \sum _{m=M_1+1}^{M_2} \sum _{k=mq+m-q}^{mk_1} \left( mq^{n-3}(q-p^b)+m-{k}\frac{q^{n-2}+1}{q+1}+\frac{q^n+1}{q+1}-1\right) \\&\qquad + \sum _{m=M_2+1}^{M_3} \sum _{ k=mq+m-q}^{q^2-q+m(q-p^b+1)} \left( mq^{n-3}(q-p^b)+m-{k}\frac{q^{n-2}+1}{q+1}+\frac{q^n+1}{q+1}-1\right) \\&\quad =M_1q^n-p^b(q^{n-1}-q^{n-2}+q^{n-3})M_1(M_1+1)/2 \\&\qquad + \left( \frac{q^n+1}{q+1}-1\right) \\&\qquad \quad \left( \sum _{m=1}^{M_1} \sum _{k=mk_0+1}^{mk_1} 1 + \sum _{m=M_1+1}^{M_2} \sum _{k=mq+m-q}^{mk_1}1 + \sum _{m=M_2+1}^{M_3} \sum _{k=mq+m-q}^{q^2-q+m(q-p^b+1)}1 \right) \\&\qquad + (q^{n-3}(q-p^b)+1)\\&\qquad \quad \left( \sum _{m=1}^{M_1} m \sum _{k=mk_0+1}^{mk_1} 1 + \sum _{m=M_1+1}^{M_2} m \sum _{k=mq+m-q}^{mk_1}1 + \sum _{m=M_2+1}^{M_3} m \sum _{k=mq+m-q}^{q^2-q+m(q-p^b+1)}1 \right) \\&\qquad - \frac{q^{n-2}+1}{q+1} \left( \sum _{m=1}^{M_1} \sum _{k=mk_0+1}^{mk_1} k + \sum _{m=M_1+1}^{M_2} \sum _{k=mq+m-q}^{mk_1}k + \sum _{m=M_2+1}^{M_3} \sum _{k=mq+m-q}^{q^2-q+m(q-p^b+1)}k \right) \\&\quad =M_1q^n-p^b(q^{n-1}-q^{n-2}+q^{n-3})M_1(M_1+1)/2 \\&\qquad + \left( \frac{q^n+1}{q+1}-1\right) \left( A + B + C \right) \\&\qquad + (q^{n-3}(q-p^b) +1) \left( D + E + F \right) \\&\qquad - \frac{q^{n-2}+1}{q+1} \left( G + H + I \right) , \end{aligned}$$

where

$$\begin{aligned} A= & {} \sum _{m=1}^{M_1}\sum _{k=mk_0+1}^{mk_1}1= \sum _{m=1}^{M_1}(mk_1-mk_0)= (k_1-k_0)\frac{M_1(M_1+1)}{2}\\ B= & {} \sum _{m=M_1+1}^{M_2}\sum _{k=mq+m-q}^{mk_1}1= \sum _{m=M_1+1}^{M_2}(mk_1-mq-m+q+1)\\= & {} (q+1)(M_2-M_1)+(k_1-q-1)\sum _{m=M_1+1}^{M_2}m\\= & {} (q+1)(M_2-M_1)+(k_1-q-1)\left( \frac{M_2(M_2+1)-M_1(M_1+1)}{2}\right) \\ C= & {} \sum _{m=M_2+1}^{M_3}(q^2-mp^b+1)= (q^2+1)(M_3-M_2)-p^b\left( \frac{M_3(M_3+1)-M_2(M_2+1)}{2}\right) \\ D= & {} \sum _{m=1}^{M_1}m(mk_1-mk_0)= (k_1-k_0)\sum _{m=1}^{M_1}m^2= (k_1-k_0)\left( \frac{M_1(M_1+1)(2M_1+1)}{6}\right) \\ E= & {} \sum _{m=M_1+1}^{M_2}m(mk_1-mq-m+q+1)= (q+1)\sum _{m=M_1+1}^{M_2}m+(k_1-q-1)\sum _{m=M_1+1}^{M_2}m^2\\= & {} (q+1)\left( \frac{M_2(M_2+1)-M_1(M_1+1)}{2}\right) \\&+(k_1-q-1)\frac{M_2(M_2+1)(2M_2+1)-M_1(M_1+1)(2M_1+1)}{6}\\ F= & {} \sum _{m=M_2+1}^{M_3}m(q^2-mp^b+1)\\= & {} (q^2+1)\left( \frac{M_3(M_3+1)-M_2(M_2+1)}{2}\right) \\&-p^b\left( \frac{M_3(M_3+1)(2M_3+1)-M_2(M_2+1)(2M_2+1)}{6}\right) \\ G= & {} \sum _{m=1}^{M_1}\left( \frac{mk_1(mk_1+1)-mk_0(mk_0+1)}{2}\right) = \frac{k_1-k_0}{2}\sum _{m=1}^{M_1}m+\frac{k_1^2-k_0^2}{2}\sum _{m=1}^{M_1}m^2\\= & {} \frac{k_1-k_0}{2}\frac{M_1(M_1+1)}{2}+\frac{k_1^2-k_0^2}{2}\frac{M_1(M_1+1)(2M_1+1)}{6}\\= & {} \frac{(k_1-k_0)m(m+1)}{4}+\frac{(k_1^2-k_0^2)M_1(M_1+1)(2M_1+1)}{12}\\ H= & {} \sum _{m=M_1+1}^{M_2}\left( \frac{mk_1(mk_1+1)-(m(q+1)-q-1)(m(q+1)-q)}{2}\right) \\ {}= & {} -\frac{q(q+1)}{2}(M_2-M_1)+\left( \frac{k_1+(2q+1)(q+1)}{2}\right) \frac{M_2(M_2+1)-M_1(M_1+1)}{2}\\&+\frac{k_1^2-(q+1)^2}{2}\frac{M_2(M_2+1)(2M_2+1)-M_1(M_1+1)(2M_1+1)}{6}\\= & {} -\frac{q(q+1)}{2}(M_2-M_1)+\frac{(k_1+(2q+1)(q+1))(M_2(M_2+1)-M_1(M_1+1))}{4}\\&+\frac{(k_1^2-(q+1)^2)(M_2(M_2+1)(2M_2+1)-M_1(M_1+1)(2M_1+1))}{12} \\ I= & {} \sum _{m=M_2+1}^{M_3}\sum _{k=mq+m-q}^{q^2-q+m(q-p^b+1)}k\\= & {} \sum _{m=M_2+1}^{M_3}\left( \frac{(q^2-q+m(q-p^b+1))(q^2-q+1+m(q-p^b+1))-(m(q+1)-q-1)(m(q+1)-q)}{2}\right) \\= & {} \frac{(q^2-q)(q^2-q+1)-q(q+1)}{2}(M_3-M_2)\\&+ \frac{((q-p^b+1)(2q^2-2q+1)+(q+1)(2q+1)) (M_3(M_3+1)-M_2(M_2+1))}{4}\\&\quad \frac{((q-p^b+1)^2-(q+1)^2)(M_3(M_3+1)(2M_3+1)-M_2(M_2+1)(2M_2+1))}{12} \end{aligned}$$

A Sage simplification of this leads to

$$\begin{aligned}&= 1/2 q^{n+1}p^{a-b} - 1/2q^n - 1/2q^2p^{a-b} + 1/2qp^{a-b} \\&\quad = \frac{q^{n+1}p^{a-b} - q^n - q^2p^{a-b} + qp^{a-b}}{2} \end{aligned}$$

\(\square \)

We remark here that the result does not vary if we replace \(M_2=(q-1)p^{a-b}\) by \(M_2'=(q-1)p^{a-b}-1\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Castellanos, A.S., Bras-Amorós, M. Weierstrass semigroup at \(m+1\) rational points in maximal curves which cannot be covered by the Hermitian curve. Des. Codes Cryptogr. 88, 1595–1616 (2020). https://doi.org/10.1007/s10623-020-00757-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10623-020-00757-4

Keywords

Mathematics Subject Classification

Navigation