Skip to main content
Log in

NaA zeolite membranes on modified porous stainless steel supports: a comparative study of different SiO2 sources

  • Original Paper
  • Published:
Brazilian Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

The deposition of a NaA zeolite layer on porous stainless steel substrates was optimized in order to obtain composite membranes for hydrogen separation. The effect of the silica source on NaA zeolite crystallinity and morphology was studied using two synthesis routes: concentrated gel and clear solution. The optimized synthesis conditions were applied for the synthesis of NaA zeolite layers on top of porous stainless steel disks or on the outer surface of tubular supports. SEM and XRD measurements confirmed that the use of rice husk allowed obtaining defect free and pure phase NaA zeolite membranes. Selectivity values similar to those published for NaA zeolite membranes based on ceramic substrates were obtained using zeolite layers deposited on porous stainless steel tubes. From the curve fitting of the experimental data, the contribution of zeolitic and non-zeolitic flux was estimated. For the membranes synthesized from a concentrated gel, H2 showed a predominated contribution of the zeolitic flux.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

\(A\) :

Model parameter (mol m2 s)

\(A_{t}\) :

Total area of the membrane (m2)

\(A_{z}\) :

Zeolite open pore area (m2)

\(B\) :

Model parameter [(mol K J−1)0.5]

\(b_{i}\) :

Langmuir adsorption constant of component i (Pa−1)

\(b_{i,0}\) :

Langmuir adsorption constant of component i at reference temperature (Pa−1)

\(C\) :

Model parameter (mol K m J−1)

\(D_{i,0}\) :

Diffusivity of component i at zero loading (m2 s−1)

\(E_{i}^{D}\) :

Activation energy of component i (J mol−1)

\(M\) :

Molecular weight (g mol−1)

\(N_{i,k}\) :

Knudsen flux (mol m−2 s−1)

\(N_{i,t}\) :

Total flux through the membrane (mol m−2 s−1)

\(N_{i,v}\) :

Viscous flux (mol m−2 s−1)

\(N_{i,z}\) :

Molar flux of component i through zeolite pores (mol m−2 s−1)

\(P\) :

Pressure (Pa)

\(P_{i}\) :

Partial pressure of component i (Pa)

\(P_{m}\) :

Mean pressure (Pa)

\(q_{s}\) :

Saturation adsorption capacity (mol kg−1)

\(R\) :

Ideal gas constant (J mol−1 K−1)

\(r_{i}\) :

Defect size (m)

\(T\) :

Temperature (K)

\(T_{0}\) :

Reference temperature (K)

\(\alpha_{i/j}\) :

Ideal separation factor

\(\Delta H_{i}\) :

Enthalpy of adsorption of component (J mol−1)

\(\Delta X\) :

Thickness of zeolite film (m)

\(\nu\) :

Viscosity (Pa s)

\(\varPi_{i}\) :

Permeance of component i (mol m−2 s−1 Pa−1)

\(\varPi_{j}\) :

Permeance of component j (mol m−2 s−1  a−1)

\(\rho\) :

Zeolite density (kg m−3)

\(\tau\) :

Membrane tortuosity

References

  • Aoki K, Kusakabe K, Morooka S (1998) Gas permeation properties of A-type zeolite membrane formed on porous substrate by hydrothermal synthesis. J Membr Sci 141:197–205

    Article  CAS  Google Scholar 

  • Aoki K, Kusakabe K, Morooka S (2000) Separation of gases with an A-type zeolite membrane. Ind Eng Chem Res 39:2245–2251

    Article  CAS  Google Scholar 

  • Ayele L, Pérez-Pariente J, Chebude Y, Diaz I (2016) Synthesis of zeolite A using kaolin from Ethiopia and its application in detergents. New J Chem 40:3440–3446

    Article  CAS  Google Scholar 

  • Basaldella EI, Kikot A, Tara JC (1997) Effect of aluminum concentration on crystal size and morphology in the synthesis of a NaAl zeolite. Mater Lett 31:83–86

    Article  CAS  Google Scholar 

  • Berenguer-Murcia A, Morallón E, Cazorla-Amorós D, Linares-Solano A (2005) Preparation of silicalite-1 layers on Pt-coated carbon materials: a possible electrochemical approach towards membrane reactors. Microporous Mesoporous Mater 78:159–167

    Article  CAS  Google Scholar 

  • Bhavornthanayod C, Rungrojchaipon P (2009) Synthesis of zeolite A membrane from rice husk ash. J Met Mater Miner 19:79–83

    CAS  Google Scholar 

  • Chen X, Yang W, Liu J, Lin L (2005) Synthesis of zeolite NaA membranes with high permeance under microwave radiation on mesoporous-layer-modified macroporous substrates for gas separation. J Membr Sci 255:201–211

    Article  CAS  Google Scholar 

  • Database of Zeolite Structures: https://america.iza-structure.org/IZA-SC/framework.php?STC=FAU. Accessed 29 May 2020

  • Feng C, Khulbe KC, Matsuura T, Farnood R, Ismail AF (2015) Progress in zeolite/zeotype membranes. J Membr Sci Res 1:49–72

    Google Scholar 

  • Fraenkel D (1981) Zeolitic encapsulation. Part 1—hydrogen diffusion in A-type zeolite encapsulates. J Chem Soc Faraday Trans 77:2029–2039

    Article  CAS  Google Scholar 

  • Freund EF (1976) Mechanism of the crystallization of zeolite X. J Cryst Growth 34:11–23

    Article  CAS  Google Scholar 

  • Gui T, Zhang F, Li Y, Xue Cui, Wu X, Zhu M, Hu N, Chen X, Kita H, Kondo M (2019) Scale-up of NaA zeolite membranes using reusable stainless steel tubes for dehydration in an industrial plant. J Membr Sci 583:180–189

    Article  CAS  Google Scholar 

  • Hosseinzadeh Hejazi SA, Avila AM, Kuznicki TM, Weizhu A, Kuznicki SM (2011) Characterization of natural zeolite membranes for H2/CO2 separations by single gas permeation. Ind Eng Chem Res 50:12717–12726

    Article  CAS  Google Scholar 

  • Hu N, Li Y, Zhong S, Wang B, Chen X (2016) Fluoride-mediated synthesis of high-flux chabazite membranes for pervaporation of ethanol using reusable macroporous stainless steel tubes. J Membr Sci 510:91–100

    Article  CAS  Google Scholar 

  • Huang A, Liang F, Steinbach F, Caro J (2010) Preparation and separation properties of LTA membranes by using 3-aminopropyltriethoxysilane as covalent linker. J Membr Sci 350:5–9

    Article  CAS  Google Scholar 

  • Huang A, Wang N, Caro J (2012) Synthesis of multi-layer zeolite LTA membranes with enhanced gas separation performance by using 3-aminopropyltriethoxysilane as interlayer. Microporous Mesoporous Mater 164:294–301

    Article  CAS  Google Scholar 

  • Kahn R, Cohen de Lara E, Viennet E (1989) Diffusivity of the hydrogen molecule sorbed in NaA zeolite by a neutron scattering experiment. J Chem Phys 91:5097–5107

    Article  CAS  Google Scholar 

  • Kanezashi M, Lin YS (2009) Gas permeation and diffusion characteristics of MFI-type zeolite membranes at high temperatures. J Phys Chem C 113:3767–3774

    Article  CAS  Google Scholar 

  • Katsuki H, Komarneni S (2009) Synthesis of Na-A and/or Na-X zeolite/porous carbon composites from carbonized rice husk. J Solid State Chem 182:1749–1975

    Article  CAS  Google Scholar 

  • Kondo M, Komori M, Kita H, Okamoto KI (1997) Tubular-type pervaporation module with zeolite NaA membrane. J Membr Sci 133:133–141

    Article  CAS  Google Scholar 

  • Krishna R, Baur R (2003) Modelling issues in zeolite based separation processes. Sep Purif Technol 33:213–254

    Article  CAS  Google Scholar 

  • Ma YH, Mancel C (1972) Diffusion studies of CO2, NO, NO2, and SO2 on molecular sieve zeolites by gas chromatography. AIChE J 18:1148–1153

    Article  CAS  Google Scholar 

  • Martínez Galeano Y, Cornaglia L, Tarditi AM (2016) NaA zeolite membrane synthesized on top of APTES-modified porous stainless steel substrates. J Membr Sci 512:93–103

    Article  Google Scholar 

  • Masuda T, Sato A, Hara H, Kouno M, Hashimoto K (1994) Preparation of a dense ZSM-5 zeolite film on the outer surface of an alumina ceramic filter. Appl Catal A 111:143–150

    Article  CAS  Google Scholar 

  • Meise W, Schwochow FE (1973) Kinetic studies on the formation of zeolite A. In: Molecular sieves. Advances in Chemistry, vol 121, pp 169–178

  • Mohamed RM, Ismail AA, Kini G, Ibrahim IA, Koopman B (2009) Synthesis of highly ordered cubic zeolite A and its ion-exchange behavior. Colloids Surf A 348:87–92

    Article  CAS  Google Scholar 

  • Nair S, Tsapatsis M (2003) Synthesis and properties of zeolitic membranes. In: Handbook of zeolite science and technology, Marcel Dekker Inc, New York

  • Ng E-P, Lim GK, Khoo G-L, Tan K-H, Ooi BS, Adam F, Ling TC, Wong K-L (2015) Synthesis of colloidal stable Linde Type J (LTJ) zeolite nanocrystals from rice husk silica and their catalytic performance in Knoevenagel reaction. Mater Chem Phys 155:30–35

    Article  CAS  Google Scholar 

  • Pina MP, Mallada R, Arruebo M, Urbiztondo M, Santamaria J (2011) Zeolite films and membranes. Emerging applications. Microporous Mesoporous Mater 144:19–27

    Article  CAS  Google Scholar 

  • Ruthven DM (2012) Diffusion in type A zeolites: new insights from old data. Microporous Mesoporous Mater 162:69–79

    Article  CAS  Google Scholar 

  • Sorenson SG, Payzant EA, Noble RD, Falconer JL (2010) Influence of crystal expansion/contraction on zeolite membrane permeation. J Membr Sci 357:98–104

    Article  CAS  Google Scholar 

  • Sorenson SG, Payzant EA, Gibbons WT, Soydas B, Kita H, Noble RD, Falconer JL (2011) Influence of zeolite crystal expansion/contraction on NaA zeolite membrane separations. J Membr Sci 366:413–420

    Article  CAS  Google Scholar 

  • Wei X-L, Liang S, Xu Y-Y, Sun Y-L, An J-F, Chao Z-S (2017) Patching NaA zeolite membrane by adding methylcellulose into the synthesis gel. J Membr Sci 530:240–249

    Article  CAS  Google Scholar 

  • Xu Y, Wei X, Liang S, Sun Y, Chao Z (2018) Synthesis of a ZSM-5/NaA hybrid zeolite membrane using kaolin as a modification layer. New J Chem 42:6664–6672

    Article  CAS  Google Scholar 

  • Zah J, Krieg HM, Breytenbach JC (2007) Single gas permeation through composiotanally different zeolite NaA membranes: observations on the intercrystalline porosity in an unconventional, semicrystalline layer. J Membr Sci 287:300–310

    Article  CAS  Google Scholar 

  • Zhang X, Tang D, Jiang G (2013a) Synthesis of zeolite NaA at room temperature: the effect of synthesis parameters on crystal size and its size distribution. Adv Powder Technol 14:689–696

    Article  Google Scholar 

  • Zhang X, Tang D, Zhang M, Yang R (2013b) Synthesis of NaX zeolite: influence of crystallization time, temperature and batch molar ratio SiO2/Al2O3 on the particulate properties of zeolite crystals. Powder Technol 235:322–328

    Article  CAS  Google Scholar 

  • Zhang F, Zheng Y, Hu L, Hu N, Kita H (2014) Preparation of high-flux zeolite T membranes using reusable macroporous stainless steel supports in fluoride media. J Membr Sci 456:107–116

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to acknowledge the financial support received from Universidad Nacional del Litoral, CONICET and ANPCyT. Thanks are also given to Betina Faroldi and Luis Salazar Hoyos for providing the silica obtained from rice husk.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Laura M. Cornaglia.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 58 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martinez Galeano, Y., Tarditi, A.M. & Cornaglia, L.M. NaA zeolite membranes on modified porous stainless steel supports: a comparative study of different SiO2 sources. Braz. J. Chem. Eng. 37, 383–397 (2020). https://doi.org/10.1007/s43153-020-00024-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43153-020-00024-y

Keywords

Navigation