Skip to main content
Log in

Heart-on-chips screening based on photonic crystals

  • Review
  • Published:
Bio-Design and Manufacturing Aims and scope Submit manuscript

Abstract

Recently, organ-on-chips have become a fast-growing research field with the widespread development of microfluidic chips and synthetic materials in tissue engineering. Due to the existing cardiotoxicity of many cardiovascular drugs, heart-on-chips which are promising to replace traditional animal models have been extensively researched and developed to mimic human organ functions in vitro. The heart-on-chips mainly focus on cardiac mechanics, which is regarded as the central indicator of in vitro heart models and drug testing. Traditional methods for the detection of myocardial mechanics have been demonstrated complex and inefficient in heart-on-chips. Therefore, photonic crystal materials with unique optical properties have attracted interests and have been introduced into the heart-on-chips, developing a visualized self-reporting system for cardiomyocytes activity monitoring. In this review, photonic crystal-based heart-on-chips for biosensing are introduced, as well as the fabrication methods and design criteria of them. The characterizations of the photonic crystal materials are classified into optical properties and structural properties, and their applications in cell culture and biosensing are further discussed. Then, several representative examples and developments of the integration of photonic crystal materials into microfluidic chips are described in detail. Finally, potentials and limitations are put forward to promote the development of the photonic crystal-based intelligent heart-on-chips.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE (2010) Reconstituting organ-level lung functions on a chip. Science 328:1662–1668. https://doi.org/10.1126/science.1188302

    Article  Google Scholar 

  2. Huh D, Fujioka H, Tung YC, Futai N, Paine R, Grotberg JB, Takayama S (2007) Acoustically detectable cellular-level lung injury induced by fluid mechanical stresses in microfluidic airway systems. Proc Natl Acad Sci USA 104:18886–18891. https://doi.org/10.1073/pnas.0610868104

    Article  Google Scholar 

  3. Huh D, Leslie DC, Matthews BD et al (2012) A human disease model of drug toxicity–induced pulmonary edema in a lung-on-a-chip microdevice. Sci Transl Med 4:159ra147. https://doi.org/10.1126/scitranslmed.3004249

    Article  Google Scholar 

  4. Perestrelo AR, Águas AC, Rainer A, Forte G (2015) Microfluidic organ/body-on-a-chip devices at the convergence of biology and microengineering. Sensors 15:31142–31170. https://doi.org/10.3390/s151229848

    Article  Google Scholar 

  5. Park SE, Georgescu A, Huh D (2019) Organoids-on-a-chip. Science 364:960–965. https://doi.org/10.1126/science.aaw7894

    Article  Google Scholar 

  6. Piccini JP, Whellan DJ, Berridge BR et al (2009) Current challenges in the evaluation of cardiac safety during drug development: translational medicine meets the critical path initiative. Am Heart J 158:317–326. https://doi.org/10.1016/j.ahj.2009.06.007

    Article  Google Scholar 

  7. Shah RR (2006) Can pharmacogenetics help rescue drugs withdrawn from the market? Future Med. https://doi.org/10.2217/14622416.7.6.889

    Article  Google Scholar 

  8. Kurokawa YK, George SC (2016) Tissue engineering the cardiac microenvironment: multicellular microphysiological systems for drug screening. Adv Drug Deliv Rev 96:225–233. https://doi.org/10.1016/j.addr.2015.07.004

    Article  Google Scholar 

  9. Mathur A, Loskill P, Shao K, Huebsch N, Hong S, Marcus SG, Marks N, Mandegar M, Conklin BR, Lee LP, Healy KE (2015) Human iPSC-based cardiac microphysiological system for drug screening applications. Sci Rep 5:8883. https://doi.org/10.1038/srep08883

    Article  Google Scholar 

  10. Yesil-Celiktas O, Hassan S, Miri AK, Maharjan S, Al-kharboosh R, Quiñones-Hinojosa A, Zhang YS (2018) Mimicking human pathophysiology in organ-on-chip devices. Adv Biosyst 2:1800109. https://doi.org/10.1002/adbi.201800109

    Article  Google Scholar 

  11. Zhang YS, Aleman J, Shin SR et al (2017) Multisensor-integrated organs-on-chips platform for automated and continual in situ monitoring of organoid behaviors. Proc Natl Acad Sci USA 114:E2293–E2302. https://doi.org/10.1073/pnas.1612906114

    Article  Google Scholar 

  12. Shin SR, Kilic T, Zhang YS et al (2017) Label-free and regenerative electrochemical microfluidic biosensors for continual monitoring of cell Secretomes. Adv Sci 4:1600522. https://doi.org/10.1002/advs.201600522

    Article  Google Scholar 

  13. Boudou T, Legant WR, Mu A et al (2012) A microfabricated platform to measure and manipulate the mechanics of engineered cardiac microtissues. Tissue Eng Part A 18:910–919. https://doi.org/10.1089/ten.tea.2011.0341

    Article  Google Scholar 

  14. Grosberg A, Alford PW, McCain ML, Parker KK (2011) Ensembles of engineered cardiac tissues for physiological and pharmacological study: heart on a chip. Lab Chip 11:4165–4173. https://doi.org/10.1039/C1LC20557A

    Article  Google Scholar 

  15. Wang L, Dou W, Malhi M et al (2018) Microdevice platform for continuous measurement of contractility, beating rate, and beating rhythm of human-induced pluripotent stem cell-cardiomyocytes inside a controlled incubator environment. ACS Appl Mater Interfaces 10:21173–21183. https://doi.org/10.1021/acsami.8b05407

    Article  Google Scholar 

  16. Polacheck WJ, Chen CS (2016) Measuring cell-generated forces: a guide to the available tools. Nat Methods 13:415. https://doi.org/10.1038/nmeth.3834

    Article  Google Scholar 

  17. Lind JU, Busbee TA, Valentine AD et al (2017) Instrumented cardiac microphysiological devices via multimaterial three-dimensional printing. Nat Mater 16:303–308. https://doi.org/10.1038/nmat4782

    Article  Google Scholar 

  18. Yoon J, Eyster TW, Misra AC, Lahann J (2015) Cardiomyocyte-driven actuation in biohybrid microcylinders. Adv Mater 27:4509–4515. https://doi.org/10.1002/adma.201501284

    Article  Google Scholar 

  19. Kang Y, Walish JJ, Gorishnyy T, Thomas EL (2007) Broad-wavelength-range chemically tunable block-copolymer photonic gels. Nat Mater 6:957–960. https://doi.org/10.1038/nmat2032

    Article  Google Scholar 

  20. Ge D, Lee E, Yang L, Cho Y, Li M, Gianola DS, Yang S (2015) A robust smart window: reversibly switching from high transparency to angle-independent structural color display. Adv Mater 27:2489–2495. https://doi.org/10.1002/adma.201500281

    Article  Google Scholar 

  21. Yue Y, Kurokawa T, Haque MA et al (2014) Mechano-actuated ultrafast full-colour switching in layered photonic hydrogels. Nat Commun 5:1–8. https://doi.org/10.1038/ncomms5659

    Article  Google Scholar 

  22. Phillips KR, England GT, Sunny S, Shirman E, Shirman T, Vogel N, Aizenberg J (2016) A colloidoscope of colloid-based porous materials and their uses. Chem Soc Rev 45:281–322. https://doi.org/10.1039/C5CS00533G

    Article  Google Scholar 

  23. Yang D, Ye S, Ge J (2014) From metastable colloidal crystalline arrays to fast responsive mechanochromic photonic gels: an organic gel for deformation-based display panels. Adv Funct Mater 24:3197–3205. https://doi.org/10.1002/adfm.201303555

    Article  Google Scholar 

  24. Kolle M, Zheng B, Gibbons N, Baumberg JJ, Steiner U (2010) Stretch-tuneable dielectric mirrors and optical microcavities. Opt Exp 18:4356–4364. https://doi.org/10.1364/OE.18.004356

    Article  Google Scholar 

  25. Park TH, Yu S, Cho SH et al (2018) Block copolymer structural color strain sensor. NPG Asia Mater 10:328–339. https://doi.org/10.1038/s41427-018-0036-3

    Article  Google Scholar 

  26. Diao YY, Liu XY, Toh GW, Shi L, Zi J (2013) Multiple structural coloring of silk-fibroin photonic crystals and humidity-responsive color sensing. Adv Funct Mater 23:5373–5380. https://doi.org/10.1002/adfm.201203672

    Article  Google Scholar 

  27. Yablonovitch E (1987) Inhibited spontaneous emission in solid-state physics and electronics. Phys Rev Lett 58:2059. https://doi.org/10.1103/PhysRevLett.58.2059

    Article  Google Scholar 

  28. John S (1987) Strong localization of photons in certain disordered dielectric superlattices. Phys Rev Lett 58:2486. https://doi.org/10.1103/PhysRevLett.58.2486

    Article  Google Scholar 

  29. Sun J, Bhushan B, Tong J (2013) Structural coloration in nature. RSC Adv 3:14862–14889. https://doi.org/10.1039/C3RA41096J

    Article  Google Scholar 

  30. Cong H, Yu B, Tang J, Li Z, Liu X (2013) Current status and future developments in preparation and application of colloidal crystals. Chem Soc Rev 42:7774–7800. https://doi.org/10.1039/C3CS60078E

    Article  Google Scholar 

  31. Zhao Y, Xie Z, Gu H, Zhu C, Gu Z (2012) Bio-inspired variable structural color materials. Chem Soc Rev 41:3297–3317. https://doi.org/10.1039/c2cs15267c

    Article  Google Scholar 

  32. Davis KE, Russel WB, Glantschnig WJ (1991) Settling suspensions of colloidal silica: observations and X-ray measurements. J Chem Soc, Faraday Trans 87:411–424. https://doi.org/10.1039/FT9918700411

    Article  Google Scholar 

  33. Denkov ND, Velev OD, Kralchevsky PA, Ivanov IB, Yoshimura H, Nagayama K (1993) Two-dimensional crystallization. Nature 361:26. https://doi.org/10.1038/361026a0

    Article  Google Scholar 

  34. Jiang P, Bertone JF, Hwang KS, Colvin VL (1999) Single-crystal colloidal multilayers of controlled thickness. Chem Mater 11:2132–2140. https://doi.org/10.1021/cm990080+

    Article  Google Scholar 

  35. Yang H, Jiang P (2010) Large-scale colloidal self-assembly by doctor blade coating. Langmuir 26:13173–13182. https://doi.org/10.1021/la101721v

    Article  Google Scholar 

  36. Gu ZZ, Fujishima A, Sato O (2002) Fabrication of high-quality opal films with controllable thickness. Chem Mater 14:760–765. https://doi.org/10.1021/cm0108435

    Article  Google Scholar 

  37. Zhao Y, Shang L, Cheng Y, Gu Z (2014) Spherical colloidal photonic crystals. Acc Chem Res 47:3632–3642. https://doi.org/10.1021/ar500317s

    Article  Google Scholar 

  38. Zhao Y, Zhao X, Sun C, Li J, Zhu R, Gu Z (2008) Encoded silica colloidal crystal beads as supports for potential multiplex immunoassay. Anal Chem 80:1598–1605. https://doi.org/10.1021/ac702249a

    Article  Google Scholar 

  39. Wang JT, Wang J, Han JJ (2011) Fabrication of advanced particles and particle—based materials assisted by droplet—based microfluidics. Small 7:1728–1754. https://doi.org/10.1002/smll.201001913

    Article  Google Scholar 

  40. Kim SH, Jeon SJ, Yi GR, Heo CJ, Choi JH, Yang SM (2008) Optofluidic assembly of colloidal photonic crystals with controlled sizes, shapes, and structures. Adv Mater 20:1649–1655. https://doi.org/10.1002/adma.200703022

    Article  Google Scholar 

  41. Ge J, Lee H, He L et al (2009) Magnetochromatic microspheres: rotating photonic crystals. J Am Chem Soc 131:15687–15694. https://doi.org/10.1021/ja903626h

    Article  Google Scholar 

  42. Srinivas RL, Chapin SC, Doyle PS (2011) Aptamer-functionalized microgel particles for protein detection. Anal Chem 83:9138–9145. https://doi.org/10.1021/ac202335u

    Article  Google Scholar 

  43. Kanai T, Lee D, Shum HC, Weitz DA (2010) Fabrication of tunable spherical colloidal crystals immobilized in soft hydrogels. Small 6:807–810. https://doi.org/10.1002/smll.200902314

    Article  Google Scholar 

  44. Xu Y, Wang H, Chen B, Liu H, Zhao Y (2019) Emerging barcode particles for multiplex bioassays. Sci China Mater 62:89–324. https://doi.org/10.1007/s40843-018-9330-5

    Article  Google Scholar 

  45. Choi SW, Zhang Y, Thomopoulos S, Xia Y (2010) In vitro mineralization by preosteoblasts in poly (DL-lactide-co-glycolide) inverse opal scaffolds reinforced with hydroxyapatite nanoparticles. Langmuir 26:12126–12131. https://doi.org/10.1021/la101519b

    Article  Google Scholar 

  46. Zhang YS, Regan KP, Xia Y (2013) Controlling the pore sizes and related properties of inverse opal scaffolds for tissue engineering applications. Macromol Rapid Commun 34:485–491. https://doi.org/10.1002/marc.201200740

    Article  Google Scholar 

  47. Choi SW, Xie J, Xia Y (2009) Chitosan-based inverse opals: three-dimensional scaffolds with uniform pore structures for cell culture. Adv Mater 21:2997–3001. https://doi.org/10.1002/adma.200803504

    Article  Google Scholar 

  48. Zhang YS, Zhu C, Xia Y (2017) Inverse opal scaffolds and their biomedical applications. Adv Mater 29:1701115. https://doi.org/10.1002/adma.201701115

    Article  Google Scholar 

  49. Wang J, Chen G, Zhao Z, Sun L, Zou M, Ren JA, Zhao Y (2018) Responsive graphene oxide hydrogel microcarriers for controllable cell capture and release. Sci China Mater 61:1314–1324. https://doi.org/10.1007/s40843-018-9251-9

    Article  Google Scholar 

  50. He J, Sun C, Gu Z et al (2018) Morphology, migration, and transcriptome analysis of schwann cell culture on butterfly wings with different surface architectures. ACS Nano 12:9660–9668. https://doi.org/10.1021/acsnano.8b00552

    Article  Google Scholar 

  51. Elbaz A, Lu J, Gao B, Zheng F, Mu Z, Zhao Y, Gu Z (2017) Chitin-based anisotropic nanostructures of butterfly wings for regulating cells orientation. Polymers 9:386. https://doi.org/10.3390/polym9090386

    Article  Google Scholar 

  52. Dong C, Lv Y (2016) Application of collagen scaffold in tissue engineering: recent advances and new perspectives. Polymers 8:42. https://doi.org/10.3390/polym8020042

    Article  Google Scholar 

  53. Dvir T, Timko BP, Kohane DS, Langer R (2011) Nanotechnological strategies for engineering complex tissues. Nat Nanotechnol 6:13. https://doi.org/10.1038/nnano.2010.246

    Article  Google Scholar 

  54. Engel E, Michiardi A, Navarro M, Lacroix D, Planell JA (2008) Nanotechnology in regenerative medicine: the materials side. Trends Biotechnol 26:39–47. https://doi.org/10.1016/j.tibtech.2007.10.005

    Article  Google Scholar 

  55. Sell SA, Wolfe PS, Garg K, McCool JM, Rodriguez IA, Bowlin GL (2010) The use of natural polymers in tissue engineering: a focus on electrospun extracellular matrix analogues. Polymers 2:522–553. https://doi.org/10.3390/polym2040522

    Article  Google Scholar 

  56. Ding Y, Sun J, Ro HW et al (2011) Thermodynamic underpinnings of cell alignment on controlled topographies. Adv Mater 23:421–425. https://doi.org/10.1002/adma.201001757

    Article  Google Scholar 

  57. Lee YS, Livingston AT (2011) Electrospun nanofibrous materials for neural tissue engineering. Polymers 3:413–426. https://doi.org/10.3390/polym3010413

    Article  Google Scholar 

  58. Schulte VA, Díez M, Möller M, Lensen MC (2009) Surface topography induces fibroblast adhesion on intrinsically nonadhesive poly (ethylene glycol) substrates. Biomacromol 10:2795–2801. https://doi.org/10.1021/bm900631s

    Article  Google Scholar 

  59. Lu H, Feng Z, Gu Z, Liu C (2009) Growth of outgrowth endothelial cells on aligned PLLA nanofibrous scaffolds. J Mater Sci Mater Med 20:1937–1944. https://doi.org/10.1007/s10856-009-3744-y

    Article  Google Scholar 

  60. Zhang Z, Cui H (2012) Biodegradability and biocompatibility study of poly (chitosan-g-lactic acid) scaffolds. Molecules 17:3243–3258. https://doi.org/10.3390/molecules17033243

    Article  Google Scholar 

  61. Park S, Park KM (2016) Engineered polymeric hydrogels for 3D tissue models. Polymers 8:23. https://doi.org/10.3390/polym8010023

    Article  Google Scholar 

  62. Wang YC, Tang ZM, Feng ZQ, Xie ZY, Gu ZZ (2010) Stretched inverse opal colloid crystal substrates-induced orientation of fibroblast. Biomed Mater 5:035011. https://doi.org/10.1088/1748-6041/5/3/035011

    Article  Google Scholar 

  63. Lu J, Zou X, Zhao Z, Mu Z, Zhao Y, Gu Z (2015) Cell orientation gradients on an inverse opal substrate. ACS Appl Mater Interfaces 7:10091–10095. https://doi.org/10.1021/acsami.5b02835

    Article  Google Scholar 

  64. Fattahi P, Borhan A, Abidian MR (2013) Microencapsulation: microencapsulation of chemotherapeutics into monodisperse and tunable biodegradable polymers via electrified liquid jets: control of size, shape, and drug release. Adv Mater 25:4529. https://doi.org/10.1002/adma.201370205

    Article  Google Scholar 

  65. Zhang B, Cheng Y, Wang H, Ye B, Shang L, Zhao Y, Gu Z (2015) Multifunctional inverse opal particles for drug delivery and monitoring. Nanoscale 7:10590–10594. https://doi.org/10.1039/C5NR02324F

    Article  Google Scholar 

  66. Zhang H, Liu D, Wang L et al (2017) Microfluidic encapsulation of prickly zinc-doped copper oxide nanoparticles with VD1142 modified spermine acetalated dextran for efficient cancer therapy. Adv Healthc Mater 6:1601406. https://doi.org/10.1002/adhm.201601406

    Article  Google Scholar 

  67. Zhang H, Liu Y, Wang J, Shao C, Zhao Y (2019) Tofu-inspired microcarriers from droplet microfluidics for drug delivery. Sci China Chem 62:87–94. https://doi.org/10.1007/s11426-018-9340-y

    Article  Google Scholar 

  68. Liu Y, Shao C, Bian F, Yu Y, Wang H, Zhao Y (2018) Egg component-composited inverse opal particles for synergistic drug delivery. ACS Appl Mater Interfaces 10:17058–17064. https://doi.org/10.1021/acsami.8b03483

    Article  Google Scholar 

  69. Ueno K, Matsubara K, Watanabe M, Takeoka Y (2007) An electro-and thermochromic hydrogel as a full-color indicator. Adv Mater 19:2807–2812. https://doi.org/10.1002/adma.200700159

    Article  Google Scholar 

  70. Wang T, Liu J, Nie F (2018) Non-dye cell viability monitoring by using pH-responsive inverse opal hydrogels. J Mater Chem B 6:1055–1065. https://doi.org/10.1039/C7TB02631E

    Article  Google Scholar 

  71. Chen Z, Fu F, Yu Y, Wang H, Shang Y, Zhao Y (2019) Cardiomyocytes-actuated Morpho butterfly wings. Adv Mater 31:1805431. https://doi.org/10.1002/adma.201805431

    Article  Google Scholar 

  72. Fu F, Shang L, Chen Z, Yu Y, Zhao Y (2018) Bioinspired living structural color hydrogels. Sci Robot 3:eaar8580. https://doi.org/10.1126/scirobotics.aar8580

    Article  Google Scholar 

  73. Li LJ, Chen ZY, Shao CM, Sun LY, Sun LY, Zhao YJ (2020) Graphene hybrid anisotropic structural color film for cardiomyocytes’ monitoring. Adv Funct Mater 30:1906353. https://doi.org/10.1002/adfm.201906353

    Article  Google Scholar 

  74. Shang Y, Chen Z, Fu F et al (2018) Cardiomyocyte-driven structural color actuation in anisotropic inverse opals. ACS Nano 13:796–802. https://doi.org/10.1021/acsnano.8b08230

    Article  Google Scholar 

  75. Choi TM, Park JG, Kim YS, Manoharan VN, Kim SH (2015) Osmotic-pressure-mediated control of structural colors of photonic capsules. Chem Mater 27:1014–1020. https://doi.org/10.1021/cm5043292

    Article  Google Scholar 

  76. Shang L, Cheng Y, Zhao Y (2017) Emerging droplet microfluidics. Chem Rev 117:7964–8040. https://doi.org/10.1021/acs.chemrev.6b00848

    Article  Google Scholar 

  77. Wang H, Gu H, Chen Z, Shang L, Zhao Z, Gu Z, Zhao Y (2017) Enzymatic inverse opal hydrogel particles for biocatalyst. ACS Appl Mater Interfaces 9:12914–12918. https://doi.org/10.1021/acsami.7b01866

    Article  Google Scholar 

  78. Wang H, Liu Y, Chen Z, Sun L, Zhao Y (2020) Anisotropic structural color particles from colloidal phase separation. Sci Adv 6:eaay1438. https://doi.org/10.1126/sciadv.aay1438

    Article  Google Scholar 

  79. Sun L, Chen Z, Bian F, Zhao Y (2020) Bioinspired soft robotic caterpillar with cardiomyocyte drivers. Adv Funct Mater 30:1907820. https://doi.org/10.1002/adfm.201907820

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 61927805), the Natural Science Foundation of Jiangsu (Grant No. BE2018707) and the Scientific Research Foundation of Nanjing University and Drum Tower Hospital.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuzhi Yang or Yuanjin Zhao.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This review does not contain any studies with human or animal subjects performed by any of the authors.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shang, Y., Chen, Z., Zhang, Z. et al. Heart-on-chips screening based on photonic crystals. Bio-des. Manuf. 3, 266–280 (2020). https://doi.org/10.1007/s42242-020-00073-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s42242-020-00073-9

Keywords

Navigation