1 Introduction and preliminaries

The algebraic system max algebra and its isomorphic versions (max plus algebra, tropical algebra) provide an attractive way of describing a class of nonlinear problems appearing for instance in manufacturing and transportation scheduling, information technology, discrete event dynamic systems, combinatorial optimization, mathematical physics, DNA analysis, ...(see e.g. [1, 3, 5, 6, 10, 11] and the references cited there). It has been used to describe these conventionally nonlinear problems in a linear fashion.

Max algebra consists of the set of nonnegative real numbers equipped with the basic operations of multiplications \(a\otimes b=ab,\) and maximization \(a\oplus b=\max \{a,b\}.\) For \(A=(a_{ij}) \in M_{m\times n}({\mathbb {R}}),\) we say that A is positive (nonnegative) and write \(A>0\)\((A \ge 0)\) if \(a_{ij}>0\)\((a_{ij} \ge 0)\) for \(1 \le i \le m\), \(1\le j \le n.\) Let \({\mathbb {R}}_{+}\) be the set of all nonnegative real numbers and \(M_{m \times n}({\mathbb {R}}_{+})\) be the set of all \(m \times n\) nonnegative real matrices. The notions \(M_{n}({\mathbb {R}}_{+})\) and \({\mathbb {R}}_{+}^{n}\) are considered for \(M_{n \times n}({\mathbb {R}}_{+})\) and \(M_{n \times 1}({\mathbb {R}}_{+}),\) respectively. Let \(A=(a_{ij})\in M_{m \times n}(\mathbb {R_{+}})\) and \(B=(b_{ij}) \in M_{n \times l}({\mathbb {R}}_{+}).\) The product of A and B in max algebra is denoted by \(A\otimes B,\) where \((A\otimes B)_{ij}=\displaystyle \max _{k=1,\ldots ,n} a_{ik}b_{kj}.\) Similarly the vector \(A \otimes x\) is defined by \((A\otimes x)_i = \displaystyle \max _{k=1,\ldots ,n} a_{ik}x_k\) for \(i=1, \ldots , m\) if \(x \in {\mathbb {R}}_{+}^{n}\). If \(A, B \in M_{n}({\mathbb {R}}_{+})\) then the max sum \(A\oplus B\) in max algebra is defined by \((A\oplus B)_{ij}=\displaystyle \max \{a_{ij}, b_{ij}\}\) for \(i,j=1, \ldots , n\). The notation \(A_{\otimes }^{2}\) means \(A\otimes A,\) and \(A_{\otimes }^{k}\) denotes the kth power of A in max algebra. For \(A \in M_{ n}({\mathbb {R}}_{+})\) and \(x \in {\mathbb {R}}_{+}^{n},\) let us denote \(\displaystyle \Vert A\Vert = \max _{i,j=1, \ldots , n} a_{ij}\) and \(\Vert x\Vert =\displaystyle \max _{i=1, \ldots , n} x_i\). Let \(r_x (A)\) denote the local spectral radius of A, i.e., \(r_x(A)=\displaystyle \limsup _{j \rightarrow \infty } \Vert A^j _{\otimes } \otimes x\Vert ^{1/j}\). It was shown in [11] for \(x=[x_{1}, \ldots , x_{n}]^{t} \in {\mathbb {R}}_{+}^{n}, x \ne 0\) that \(r_x(A)=\displaystyle \lim _{j \rightarrow \infty } \Vert A^j _{\otimes } \otimes x\Vert ^{1/j}\) and that \(r_x (A)=\displaystyle \max \{r_{e_i}(A): i=1, \ldots ,n, x_i \ne 0 \}\), where \(e_i\) denotes the ith standard basis vector and \(x_i\) denotes the ith coordinate of x. We say that \(\mu \ge 0\) is a geometric max eigenvalue of A if \(A\otimes x= \mu x\) for some \(x\ne 0\), \(x\ge 0\). Let \(\sigma _\text {max}(A)\) denote the set of geometric max eigenvalues of A. The following result of Gunawardena was restated and reproved in [11, Theorem 2.7].

Theorem 1

If \(A\in M_{ n}({\mathbb {R}}_{+})\), then

$$\begin{aligned} \sigma _ \text {max}(A)=\{\mu : \hbox { there exists } j\in \{1,\ldots ,n\}, \mu =r_{e_j}(A)\}. \end{aligned}$$

We define the standard vector multiplicity of geometric max eigenvalue \(\mu\) as the number of indices j such that \(\mu = r_{e_j}(A)\).

The role of the spectral radius of A in max algebra is played by the maximum cycle geometric mean \(\mu (A)\), which is defined by

$$\begin{aligned} \mu (A)=\max \Bigl \{(a_{i_1 i_k}\cdots a_{i_3 i_2}a_{i_2 i_1})^{1/k}: k \in {\mathbb {N}} \;\;\mathrm {and}\;\; i_1,\ldots ,i_k\in \{1,\ldots ,n\}\Bigr \} \end{aligned}$$
(1)

and is equal to

$$\begin{aligned} \mu (A)=\max \Bigl \{(a_{i_1 i_k}\cdots a_{i_3 i_2}a_{i_2 i_1})^{1/k}: k \le n \;\mathrm {and}\; i_1,\ldots ,i_k\in \{1,\ldots ,n\} \; \mathrm {mutually} \; \mathrm {distinct} \Bigr \}. \end{aligned}$$

A digraph \({\mathcal {G}}(A)= (N(A),E(A))\) associated to A is defined by setting \(N(A) =\{ 1,\ldots ,n\}\) and letting \(( i,j) \in E(A)\) whenever \(a_{ij} > 0\). When this digraph contains at least one cycle, one distinguishes critical cycles, where the maximum in (1) is attained. A graph with just one node and no edges will be called trivial. A bit unusually, but in consistency with [3] and [11], a matrix \(A\in M_{ n}({\mathbb {R}}_{+})\) is called irreducible if \({\mathcal {G}}(A)\) is trivial (A is \(1\times 1\) zero matrix) or strongly connected (for each \(i,j \in N(A)\), \(i\ne j\), there is a path in \({\mathcal {G}}(A)\) that starts in i and ends in j).

It is known that \(\mu (A)\) is the largest geometric max eigenvalue of A, i.e., \(\mu (A)=\displaystyle \max \{\mu :\mu \in \sigma _\text {max}(A)\}\) and so we have \(\mu (A)=\displaystyle \max _{j=1,\ldots ,n} r_{e_{j}}(A).\) Moreover, if A is irreducible, then \(\mu (A)\) is the unique max eigenvalue and every max eigenvector is positive (see e.g. [3]).

The max permanent of A is

$$\begin{aligned} \text {perm}(A) = \max _{\sigma \in S_n} a_{1 \sigma (1)} \cdots a_{n \sigma (n)}, \end{aligned}$$

where \(S_n\) is the group of permutations on \(\{1, \ldots ,n \}\). The characteristic maxpolynomial of A (see e.g. [3, 14, 15]) is a max polynomial

$$\begin{aligned} \chi _A (x) = \text {perm} (x I \oplus A), \end{aligned}$$

where I denotes the identity matrix. We call its tropical roots (the points of nondifferentiability of \(\chi _A (x)\) considered as a function on \([0, \infty )\)) algebraic max eigenvalues (or also tropical eigenvalues) of A. The set of all algebraic max eigenvalues is denoted by \(\sigma _\text {trop} (A)\). For \(\lambda \in \sigma _\text {trop} (A)\) its multiplicity as a tropical root of \(\chi _A (x)\) (see e.g [3, 14, 15]) is called an algebraic multiplicity of \(\lambda\). It is known that \(\sigma _\text {max}(A) \subset \sigma _\text {trop} (A)\) [15, Remark 2.3] and that \(\mu (A)= \max \{\lambda :\lambda \in \sigma _\text {trop}(A)\}\), but in general, the sets \(\sigma _\text {max}(A)\) and \(\sigma _\text {trop} (A)\) may differ.

Let \(A \in M_{n }({\mathbb {R}}_{+})\). The max-numerical range \(W_\text {max}(A)\) of A was defined in [15] (actually its isomorphic version in the setting of max-plus (tropical) algebra) and it was shown there that \(\sigma _\text {trop} (A) \subset W_\text {max} (A)\) [15, Theorem 3.10]. It was proved in [15, Theorem 3.7] that given \(A \in M_{n }({\mathbb {R}}_{+})\)

$$\begin{aligned} W_\text {max}(A)=\left[ \min _{i \in \{1,\ldots , n \}}\!\!\! a_{ii}, \max _{i, j \in \{1,\ldots , n \}}\!\!\! a_{ij}\right] . \end{aligned}$$
(2)

In the current article we provide a short proof of this fact. This proof provides also new insights, which enables us to consider several generalizations of the max-numerical range and to provide interesting results for these generalizations.

As it will be evident from below the article is partly expository and is organized as follows. In Sect. 2 we give a short proof of the formula (2) (Theorem 2) and obtain some interesting results. In the third section we recall the definition of the joint numerical range of a k-tuple \((A_{1}, \ldots , A_{k}),\) where \(A_{i} \in M_{n}, i=1,\ldots , k,\) and we apply Theorem 2 to obtain a new formula for max joint numerical range \(W_{\max }(\varSigma )\) of a bounded set \(\varSigma\) of \(n \times n\) nonnegative matrices (11). We move on in Section 4 to introduce some definitions and facts, which we need in our proofs and study the max \(k-\)numerical range \(W_{\max }^{k}(A)\), where \(k \le n\) is a positive integer. We explicitly describe a formula for \(W_{\max }^{k}(A)\) (Theorem 3) and then use this to state some of its basic properties (Theorem 4). Related interesting results are also obtained for the max k-geometric spectrum and k-tropical spectrum of \(A \in M_{n}({\mathbb {R}}_{+})\). In the last section we introduce and study the max \(c-\)numerical range and max \(C-\)numerical range of nonnegative matrices, where \(c \in {\mathbb {R}}_{+}^{n}\) and \(C \in M_{n }({\mathbb {R}}_{+}).\) Also, we investigate some basic algebraic and geometrical properties of these sets.

2 Max-numerical range

Let \(M_n ({\mathbb {C}})\) be the vector space of all \(n\times n\) complex matrices. The numerical range of a square matrix \(A\in M_n ({\mathbb {C}})\) is defined by

$$\begin{aligned} W(A) = \left\{ {{x^*}Ax\mathrm{{ }}:{} {} {} {} {} x \in {{\mathbb {C}}^n},{} {} {} {x^*}x = 1\mathrm{{ }}} \right\} \end{aligned}$$

It is known that W(A) is compact, convex and contains the spectrum of A. In [15], the numerical range of a given square matrix was introduced and described in the setting of max-plus algebra. We study here its isomorphic version in max algebra setting and provide a short proof of one of their main results [15, Theorem 3.7] in Theorem 2.

Definition 1

Let \(A\in M_n(\mathbb {R_+})\) be a non-negative matrix. The max numerical range \(W_\text {max}(A)\) of A is defined by

$$\begin{aligned} {W_{\max }}(A) = \left\{ {{x^t} \otimes A \otimes x:\,\,\,x \in {{\mathbb {R}} }_{+}^n,\,{x^t} \otimes x = 1\,} \right\} \end{aligned}$$

It’s obvious that

$$\begin{aligned} W_\text {max}(A)= & \left\{x^{t}\otimes A\otimes x: x \in {\mathbb {R}}_{+}^{n},~ x^{t}\otimes x=1\right \} \\= & \left\{\frac{x^{t}}{\sqrt{x^{t}\otimes x}}\otimes A\otimes \frac{x}{\sqrt{x^{t}\otimes x}}: ~0\ne x \in {\mathbb {R}}_{+}^{n} \right\}\\= & \left\{\frac{1}{x^{t}\otimes x}x^{t}\otimes A\otimes x:~0\ne x \in {\mathbb {R}}_{+}^{n}\right \} \end{aligned}$$

Remark 1

(i) If \(x\in {\mathbb {R}}_{+}^{n}\), then \(x^t\otimes x=1\) means

$$\begin{aligned} \max \left\{ {x_1, x_2,\ldots ,x_n} \right\} = 1, \end{aligned}$$

i.e., for all \(1\le i\le n,\)\(0 \le x_{i} \le 1\) and \(x_j=1\) for some \(1\le j\le n.\)

(ii) Suppose that \(A\in M_n(\mathbb {R_+})\) and \(f_A:S\longrightarrow {\mathbb {R}}_{+},\) where

$$\begin{aligned} S=\{x \in {\mathbb {R}}_{+}^n,~x^t\otimes x = 1 \}, f_{A}(x):= x^{t}\otimes A\otimes x. \end{aligned}$$

So \(W_{\max }(A)\) is the image of the continuous function \(f_{A}.\) Since S is a connected set, also \(W_{\max }(A)\) is a connected set.

Next we provide a new short proof of (2) ([15, Theorem 3.7]).

Theorem 2

Let \(A=(a_{ij})\in M_n(\mathbb {R_+})\) be a nonnegative matrix. Then

$$\begin{aligned} W_{\max }(A)=[a, b] \subseteq \mathbb {R_{+}}, \end{aligned}$$

where \(a=\displaystyle \min _{1 \le i \le n}a_{ii}\) and \(b=\displaystyle \max _{1 \le i,j \le n}a_{ij}.\)

Proof

By definition of \(W_{\max }(A)\) we have

$$\begin{aligned} W_{\max }(A)=\{ \bigoplus _{i,j=1}^{n} a_{ij}x_{i}x_{j}: ~x_{i} \in {\mathbb {R}}_{+}~ \forall i=1,2,\ldots ,n~, \max \{x_{1}, x_{2}, \ldots , x_{n}\}=1 \}. \end{aligned}$$

Let \(z \in W_{\max }(A)\) be given. So,

$$\begin{aligned} z=x^{t}\otimes A \otimes x=\bigoplus _{i,j=1}^{n} a_{ij}x_{i}x_{j}, \end{aligned}$$

for some \(x=[x_{1}, x_{2},\ldots , x_{n}]^{t}\in {\mathbb {R}}_{+}^{n}\) with \(\max \{x_{1}, x_{2}, \ldots , x_{n}\}=1.\) It holds that \(0\le x_{i}\le 1\) for all \(1\le i\le n\) and \(x_{i_{0}}=1\) for some \(1\le i_{0}\le n.\) By taking

$$\begin{aligned} z = \max \{ a_{ij}x_{i}x_{j}:~ 1\le i,j \le n,~ 0\le x_{i},x_{j} \le 1\}=a_{i_{1}j_{1}}x_{i_{1}}x_{j_{1}}, \end{aligned}$$

for some \(1\le i_{1}, j_{1}\le n,\) we have

$$\begin{aligned} a\le a_{i_{0}i_{0}}=a_{i_{0}i_{0}}x_{i_{0}}x_{i_{0}} \le z=a_{i_{1}j_{1}}x_{i_{1}}x_{j_{1}} \le a_{i_{1}j_{1}} \le b, \end{aligned}$$

since \(a=\displaystyle \min _{1 \le i \le n}a_{ii}\) and \(b=\displaystyle \max _{1 \le i,j \le n}a_{ij}.\) So \(W_{\max }(A) \subseteq [a, b].\)

To prove the reverse inclusion, recall that the function \(x\longmapsto f_{A}(x)=x^{t}\otimes A \otimes x\) is continuous on the compact connected set (Fig. 1)

$$\begin{aligned} S=\{x \in {\mathbb {R}}_{+}^n,~x^t\otimes x = 1 \}. \end{aligned}$$
(3)

Let \(1 \le k \le n\) be such that \(a=\displaystyle \min _{1 \le i \le n} a_{ii}=a_{kk}\). Then the vectors \(x=[1,1,\ldots , 1]^{t}\) and \(y=e_k=[0,\ldots ,0,1,0,\ldots , 0]^{t}\) satisfy \(x, y \in S\) and

$$\begin{aligned} f_{A}(x)=x^{t}\otimes A \otimes x=\bigoplus _{i,j=1}^{n} a_{ij}=b \end{aligned}$$

and

$$\begin{aligned} f_{A}(y)=y^{t}\otimes A \otimes y=a_{kk}=\displaystyle \min _{1 \le i \le n}a_{ii}=a. \end{aligned}$$

By Remark 1(ii), \(W_{\max }(A)\) is a connected set and so \(W_{\max }(A)=[a, b],\) which completes the proof. \(\square\)

Fig. 1
figure 1

The max numerical range of a \(n \times n\) matrix \(A,~ W_{\max }(A)\)

Remark 2

Alternatively, in Theorem 2, one can prove \([a, b] \subseteq W_\text {max}(A),\) where

$$\begin{aligned} a=\displaystyle \min _{1 \le i \le n}a_{ii},~b=\displaystyle \max _{1 \le i,j \le n}a_{ij}, \end{aligned}$$

in the following constructive way.

Let \(z \in [a, b]\) be given and let \(a=\displaystyle \min _{1 \le i \le n}a_{ii}=a_{kk}\) and \(b=\displaystyle \max _{1 \le i, j \le n}a_{ij}=a_{rs}\) for some \(1\le k, r, s \le n.\) Now we consider four cases.

Case 1::

If \(r\ne s,~ r=k~ or~ s=k\), by taking \(x=[\frac{z}{b}, \ldots ,1, \ldots , \frac{z}{b}]^{t},\) where \(x_{k}=1, x_{i}=\frac{z}{b}~ \forall i \ne k,\) we have

$$\begin{aligned} \!\!\!\!\!\!\!\! \!\!\!\!\!\! x^{t}\otimes x=1,~~ x^{t}\otimes A\otimes x=z. \end{aligned}$$
Case 2::

If \(r=s=k\), then by taking \(x=[1, \ldots , 1]^{t}\) we have

$$\begin{aligned} x^{t}\otimes x=1,~~ x^{t}\otimes A\otimes x=z=a=b. \end{aligned}$$
Case 3::

If \(r=s\), \(r\ne k\), then by letting \(\alpha =\max \{a_{kr}, a_{rk}\}\) and taking

$$\begin{aligned} x=\left\{ \begin{array}{ll} {[}0, \ldots ,1, \ldots , \sqrt{\frac{z}{b}}, \ldots , 0]^{t}, x_{k}=1, x_{r}=\sqrt{\frac{z}{b}}, x_{i}=0~ \forall i \ne r, k &{} z>\frac{\alpha ^{2}}{b} \\ {[}0, \ldots ,1, \ldots , \frac{z}{\alpha }, \ldots , 0]^{t}, x_{k}=1, x_{r}=\frac{z}{\alpha }, x_{i}=0~ \forall i \ne r, k &{} z\le \frac{\alpha ^{2}}{b},\\ \end{array}\right. \end{aligned}$$

we have

$$\begin{aligned} x^{t}\otimes x=1,~~ x^{t}\otimes A\otimes x=z. \end{aligned}$$
Case 4::

Finally, for \(r \ne s\), \(r \ne k\), \(s\ne k\), by letting \(\alpha =\max \{a_{kr}, a_{rk}, a_{rr} \}\) and by taking

$$\begin{aligned} x=\left\{ \begin{array}{ll} {[}0, \ldots ,1, \ldots , \frac{z}{\alpha }, \ldots , 0]^{t}, x_{k}=1, x_{r}=\frac{z}{\alpha } &{} \alpha =a_{kr}\oplus a_{rk} \\ {[}0, \ldots ,1, \ldots , \sqrt{\frac{z}{\alpha }}, \ldots , 0]^{t}, x_{k}=1, x_{r}=\sqrt{\frac{z}{\alpha }} &{} \alpha =a_{rr}, z>\frac{(a_{kr}\oplus a_{rk})^{2}}{\alpha } \\ {[}0, \ldots ,1, \ldots ,\frac{z}{a_{kr}\oplus a_{rk}}, \ldots , 0]^{t}, x_{k}=1, x_{r}=\frac{z}{a_{kr}\oplus a_{rk}} &{} \alpha =a_{rr}, z\le \frac{(a_{kr}\oplus a_{rk})^{2}}{\alpha }\\ \end{array}\right. \end{aligned}$$

if \(a \le z \le \alpha\), and by taking

$$\begin{aligned} x=[0, \ldots ,1, \ldots ,1 , \ldots , \frac{z}{b}, \ldots , 0]^{t}, x_{k}=x_{r}=1, x_{s}=\frac{z}{b} \end{aligned}$$

if \(\alpha \le z \le b\), one can verify that

$$\begin{aligned} x^{t}\otimes x=1,~~ x^{t}\otimes A\otimes x=z, \end{aligned}$$

which completes the proof.

Corollary 1

Let \(A=diag (\lambda _1,\ldots ,\lambda _n) \in M_n(\mathbb {R_+})\) be a diagonal matrix and \(0\le \lambda _1\le \cdots \le \lambda _n,\) then \(W_\text {max}(A)=[\lambda _1,\lambda _n].\)

Since the maximum of differentiable functions is locally Lipschitz continuous, the following proposition follows.

Proposition 1

Let \(A=(a _{ij} )\in M_n({\mathbb {R}}_{+})\) be a nonnegative matrix. The map \(f_{A}: S\longrightarrow {\mathbb {R}}_{+}\) where

$$\begin{aligned} S=\{x \in {\mathbb {R}}_{+}^n,~x^t\otimes x = 1 \},~f_{A}(x)= x^{t}\otimes A\otimes x \end{aligned}$$

is locally Lipschitz continuous on S.

In conventional algebra, a matrix \(U\in M_n\) is called unitary if \(U^*U=UU^*=I_n.\) By analogy one can make the following definition in max algebra:

Definition 2

Let \(U\in M_n({\mathbb {R}}_{+})\). If \(U^t\otimes U=U\otimes U^t=I_n,\) then U is called unitary in max algebra and we denote

$$\begin{aligned} {\mathcal {U}}_{n}=\{U \in M_n({\mathbb {R}}_{+}): U^{t}\otimes U=U\otimes U^t= I_n \}. \end{aligned}$$
(4)

The following result was established in [3].

Proposition 2

Let \(A\in M_n({\mathbb {R}}_+)\) be a non-negative matrix. Then A is unitary in max algebra if and only if A is a permutation matrix.

The following proposition is an analogue of the property of unitary similarity invariance for the field of values, [8, Chapter1]. Its proof is straightforward and it is omitted.

Proposition 3

Let \(A, P \in M_n({\mathbb {R}}_+)\) be nonnegative matrices and let P be a permutation matrix. Then

$$\begin{aligned} {W_{\max }}({P^t} \otimes A \otimes P) = {W_{\max }}(A). \end{aligned}$$

For \(X, Y \subseteq {\mathbb {R}}_{+},\) recall that \(X \oplus Y\) is defined as follows:

$$\begin{aligned} X\oplus Y=\{x\oplus y:~x \in X, y \in Y \}. \end{aligned}$$

In the following two results we collect some properties of \(W_\text {max}.\) By Theorem 2, the proofs are straightforward and we omit them. Let us point out that (ii), (iv) and one inclusion in (i) from Proposition 4 have already been stated in [15].

Proposition 4

Let \(A,B\in M_{n}(\mathbb {R_+})\) be nonnegative matrices and let \(\alpha ,\beta \in \mathbb {R_+}\). Then the following statements hold.

  1. (i)

    \({W_{\max }}(A \oplus B)=W_{\max }(A)\oplus W_{\max }(B).\)

  2. (ii)

    If \(\alpha \ne 0,\)\(W_{\max }(\alpha A \oplus \beta I) =\alpha W_{\max }(A)\oplus \{\beta \}=\alpha W_{\max }(A\oplus \frac{\beta }{\alpha } I).\) Also, \(W_\text {max}(\beta I)=\{\beta \}.\)

  3. (iii)

    If \(A=\left[ \begin{array}{cc} D &{} 0_{n_{1} \times n_{2}} \\ 0_{n_{2} \times n_{1}} &{} C \end{array} \right] ,\) where \(D\in M_{n_{1}}(\mathbb {R_+}), C \in M_{n_{2}}(\mathbb {R_+}), n=n_{1}+n_{2},\) then

    $$\begin{aligned} W_{\max }(D)\oplus W_{\max }(C)\subseteq W_{\max }(A). \end{aligned}$$

    The equality holds, when \(\displaystyle \min _{1 \le i \le n_{1}}d_{ii}= \min _{1 \le i \le n_{2}}c_{ii}.\)

  4. (iv)

    \(\sigma _{\max }(A) \subseteq \sigma _\text {trop }(A) \subseteq W_{\max }(A).\)

  5. (v)

    \(W_{\max }(A^{t})=W_{\max }(A).\)

  6. (vi)

    If \(\displaystyle \max _{1 \le i, j \le n}a_{ij}=a_{kk}\) for some \(1 \le k \le n\), then \(\displaystyle \max \left( W_{\max }(A_{\otimes }^{m})\right) =a_{kk}^{m}.\)

Proposition 5

Let \(A, B \in M_{n}({\mathbb {R}}_{+})\) be diagonal matrices. If \(W_\text {max}(A) \subseteq W_\text {max}(B),\) then

$$\begin{aligned} W_\text {max}(A_{\otimes }^{m}) \subseteq W_\text {max}(B_{\otimes }^{m}),~~\forall ~m\ge 1. \end{aligned}$$

It turns out that in several cases the quotients \(\frac{l(W_{\max }(A^{m+1} _{\otimes }))}{l(W_{\max }(A^{m} _{\otimes }))}\) and \(\frac{l(W_{\max }(A^{m+2} _{\otimes }))}{l(W_{\max }(A^{m} _{\otimes }))}\), where \(l(\cdot )\) denotes the length of an interval, have interesting asymptotic behaviour. We illustrate this in the following examples.

Example 1

Let \(A=\left[ \begin{array}{ccc} 4 &{} 2 &{} 5 \\ 3 &{} 7 &{} 1 \\ 9 &{} 6 &{} 8 \end{array} \right] .\) So \(W_{\max }(A)=[4, 3^{2}]\) and by computing \(A^{2} _{\otimes }, A^{3} _{\otimes }, A^{4} _{\otimes }, \ldots , A^{15} _{\otimes }\), respectively, we have

$$\begin{aligned} W_{\max }(A_{\otimes }^{2})=[3^{2}\times 5, 3^{2}\times 2^{3}],~~ W_{\max }(A_{\otimes }^{3})=[7^{3}, 3^{2}\times 2^{6}],~~ W_{\max }(A_{\otimes }^{4})=[7^{4}, 3^{2}\times 2^{9}], \ldots , \end{aligned}$$

and

$$\begin{aligned} W_{\max }(A_{\otimes }^{15})=[11.25\times 8^{13}, 72\times 8^{13}]. \end{aligned}$$

By a straightforward induction, we can show that

$$\begin{aligned} A_{\otimes }^{m}=\left[ \begin{array}{ccc} 45 \times 8^{m-2} &{} 30 \times 8^{m-2} &{} 40 \times 8^{m-2} \\ 1080 \times 8^{m-4} &{} 11.25\times 8^{m-2} &{} 15\times 8^{m-2} \\ 72 \times 8^{m-2} &{} 48 \times 8^{m-2} &{} 64 \times 8^{m-2} \end{array} \right] ~ \forall m\in {\mathbb {N}}, m\ge 15 \end{aligned}$$

and so it follows that

$$\begin{aligned} W_{\max }(A_{\otimes }^{m})=[11.25\times 8^{m-2}, 72\times 8^{m-2}]~ \forall m\in {\mathbb {N}}, m\ge 15. \end{aligned}$$
(5)

It follows from (5) that

$$\begin{aligned} \lim _{m \rightarrow \infty }\frac{l(W_{\max }(A_{\otimes }^{m+1} ))}{l(W_{\max }(A^{m} _{\otimes }))}=8. \end{aligned}$$

Example 2

Let \(A=\left[ \begin{array}{cccc} 3 &{} 4 &{} 2 &{} 9 \\ 6 &{} 2 &{} 7 &{} 3\\ 9 &{} 3 &{} 4 &{} 5\\ 8 &{} 2 &{} 5 &{} 6 \end{array} \right] .\) By induction, we establish that

$$\begin{aligned} A_{\otimes }^{2m}=72^{m-2} A_{\otimes }^{4},~~A_{\otimes }^{2m+1}=72^{m-2} A_{\otimes }^{5},~\forall ~m \in {\mathbb {N}},~ m\ge 3, \end{aligned}$$
(6)

where

$$\begin{aligned} A_{\otimes }^{4}=\left[ \begin{array}{cccc} 5184 &{} 1728 &{} 3240 &{} 3888 \\ 4536 &{} 1728 &{} 2835 &{} 3888\\ 3888 &{} 2592 &{} 2430 &{} 5832\\ 3456 &{} 2304 &{} 2160 &{} 5184 \end{array} \right] ,~ A_{\otimes }^{5}=\left[ \begin{array}{cccc} 31104 &{} 20736 &{} 19440 &{} 46656 \\ 31104 &{} 18144 &{} 19440 &{} 40824\\ 46656 &{} 15552 &{} 29160 &{} 34992\\ 41472 &{} 13824 &{} 25920 &{} 31104 \end{array} \right] . \end{aligned}$$

A straightforward computation shows that (6) holds for \(m=3\). Assume now that (6) holds for \(m=3, \ldots , k\). Thus, by the inductive assumption, we obtain

$$\begin{aligned} A_{\otimes }^{2(k+1)}= & {} A_{\otimes }^{2k}\otimes A_{\otimes }^{2}=72^{k-2}A_{\otimes }^{4}\otimes A_{\otimes }^{2}\\= & {} 72^{k-2}A_{\otimes }^{6}=72^{k-2}\times 72 A_{\otimes }^{4}\\= & {} 72^{k-1}A_{\otimes }^{4}, \end{aligned}$$

and similarly

$$\begin{aligned} A_{\otimes }^{2(k+1)+1}=72^{k-1} A_{\otimes }^{5}. \end{aligned}$$

Using (6) we have

$$\begin{aligned} W_{\max }(A^{2m} _{\otimes })=[72^{m-2}\times 1728, 72^{m-2}\times 5832] \end{aligned}$$

and

$$\begin{aligned} W_{\max }(A^{2m+1} _{\otimes })=[72^{m-2}\times 18144, 72^{m-2}\times 46656]. \end{aligned}$$

It follows

$$\begin{aligned} \displaystyle \lim _{m \rightarrow \infty }\frac{l(W_{\max }(A^{2m+1} _{\otimes }))}{l(W_{\max }(A^{2m} _{\otimes }))}=\frac{132}{19},~~\displaystyle \lim _{m \rightarrow \infty }\frac{l(W_{\max }(A^{2m+2} _{\otimes }))}{l(W_{\max }(A^{2m+1} _{\otimes }))}=\frac{114}{11} \end{aligned}$$

and

$$\begin{aligned} \displaystyle \lim _{m \rightarrow \infty }\frac{l(W_{\max }(A^{2m+2} _{\otimes }))}{l(W_{\max }(A^{2m} _{\otimes }))}=\displaystyle \lim _{m \rightarrow \infty }\frac{l(W_{\max }(A^{2m+3} _{\otimes }))}{l(W_{\max }(A^{2m+1} _{\otimes }))}=72. \end{aligned}$$

So the limit \(\displaystyle \lim _{m \rightarrow \infty }\frac{l(W_{\max }(A^{m+1} _{\otimes }))}{l(W_{\max }(A^{m} _{\otimes }))}\) does not exist, but the limit

$$\begin{aligned} \lim _{m \rightarrow \infty }\frac{l(W_{\max }(A^{m+2} _{\otimes }))}{l(W_{\max }(A^{m} _{\otimes }))} \end{aligned}$$

exists and it is equal to 72.

The Cyclicity theorem in max-algebra ( [3, Theorem 8.3.5]) states the following: if \(A\in M_{n}({\mathbb {R}}_{+})\) is an irreducible matrix, then there exists \(p \in {\mathbb {N}}\) and there exists \(T\in {\mathbb {N}}\) such that

$$\begin{aligned} A^{m+p} _{\otimes } = \mu (A)^p A^m _{\otimes } \end{aligned}$$
(7)

holds for every \(m\ge T\). A matrix A for which there exist p and T such that (7) holds for all \(m\ge T\) is called ultimately periodic. Thus every irreducible matrix is ultimately periodic. The smallest p such that (7) holds for all \(m\ge T\) and some T is called a period of A. It is known that a period of an irreducible matrix A equals the cyclicity of A (see [3, Chapter 8]).

More generally, the General cyclicity theorem ( [3, Theorem 8.6.9]) states that \(A\in M_{n}({\mathbb {R}}_{+})\) is ultimately periodic if and only if each irreducible diagonal block of the Frobenius normal form of A has the same geometric max eigenvalue (equal to \(\mu (A)\)). For definitions, we refer to [3].

Consequently, if \(A\in M_{n}({\mathbb {R}}_{+})\) is irreducible, then there exist natural numbers p and T such that \(\displaystyle l(W_{\max }(A^{m+p} _{\otimes })) =\mu (A)^p l(W_{\max }(A^{m} _{\otimes }))\) for all \(m\ge T\). Therefore, if \(l(W_{\max }(A^{m} _{\otimes })) >0\) for all \(m\ge T\), then

$$\begin{aligned} \displaystyle \lim _{m \rightarrow \infty }\frac{l(W_{\max }(A^{m+p} _{\otimes }))}{l(W_{\max }(A^{m} _{\otimes }))} = \mu (A)^p . \end{aligned}$$
(8)

In the following, we consider two special cases when (8) holds for \(p=1\).

Proposition 6

Let \(A=(a_{ij})\in M_{n}({\mathbb {R}}_{+})\) be a nonnegative matrix such that \(l(W_{\max }(A )) >0\).

  1. (i)

    If A is an upper triangular matrix or a lower triangular matrix, then

    $$\begin{aligned} \lim _{m\rightarrow \infty } \frac{l(W_{\max }(A^{m+1} _{\otimes }))}{l(W_{\max }(A^{m} _{\otimes }))}=\max _{1 \le i \le n} a_{ii}; \end{aligned}$$
  2. (ii)

    If \(\displaystyle \max _{1 \le i, j \le n} a_{ij}=\max _{1 \le i \le n}a_{ii}\) and the limit \(\displaystyle \lim _{m\rightarrow \infty } \frac{l(W_{\max }(A^{m+1} _{\otimes }))}{l(W_{\max }(A^{m} _{\otimes }))}\) exists, then it is equal to the maximum of \(a_{ii}\) on \(1\le i \le n\).

Proof

(i) By Propositions 3 and 4(v) we may assume without loss of generality that \(a_{11}\le a_{22} \le \ldots \le a_{nn}\) and that A is upper triangular matrix. By computing \(A^m _{\otimes }\), one can see that there exists some \(s \ge n\) such that

$$\begin{aligned} A^{m} _{\otimes }= \left[ \begin{array}{llllll} a_{11}^{m} &{} k_{12}a_{22}^{m-1}&{}\cdots &{} k_{1i}a_{ii}^{m-i+1} &{} \cdots &{} k_{1n}a_{nn}^{m-n+1} \\ 0 &{} a_{22}^{m} &{} \cdots &{} k_{2i}a_{ii}^{m-i+2} &{} \cdots &{} k_{2n}a_{nn}^{m-n+2} \\ \vdots &{} 0 &{} \ddots &{} \vdots &{} \cdots &{} \vdots \\ 0&{} \vdots &{}0 &{} a_{ii}^{m} &{} \cdots &{} k_{in}a_{nn}^{m-n+i}\\ \vdots &{} \vdots &{} \cdots &{} \ddots &{} \ddots &{} \vdots \\ 0 &{} 0 &{} \cdots &{} \cdots &{} 0 &{} a_{nn}^{m} \end{array} \right] ~~~\forall ~m \ge s. \end{aligned}$$

We claim that there exist \(1 \le i_{0}\le n\) and \(s_{0} \ge n\) such that

$$\begin{aligned} \max _{1 \le i, j\le n} (A^{m} _{\otimes })_{ij}=k_{i_{0}n}a_{nn}^{m-n+i_{0}}~~\forall ~m \ge s_{0}. \end{aligned}$$

If this is not the case, then for some large enough \(m\ge n,\) there exist \(1 \le i_{1}, j_{1} \le n\) such that

$$\begin{aligned} k_{i_{1}j_{1}}a_{j_{1}j_{1}}^{m-j_{1}+i_{1}} > k_{in}a_{nn}^{m-n+i}, ~ 1 \le i \le n. \end{aligned}$$

This shows that

$$\begin{aligned} \displaystyle m <\frac{\ln \left(\frac{k_{in}a_{j_{1}j_{1}}^{j_{1}-i_{1}}}{k_{i_{1}j_{1}}a_{nn}^{n-i}}\right)}{\ln \left(\frac{a_{j_{1}j_{1}}}{a_{nn}}\right)}, \end{aligned}$$

which leads to a contradiction. This shows that the claim is true and the result follows since the minimal element on the diagonal of \(A^m _{\otimes }\) is strictly smaller than \(a_{nn}^{m}\) for all \(m\ge s_0\).

(ii) We may assume that \(a_{11}\le a_{22} \le \cdots \le a_{nn}\). As \(\displaystyle \max _{1 \le i, j \le n}a_{ij}=\max _{1 \le i \le n} a_{ii}=a_{nn},\) it follows that

$$\begin{aligned} a_{nn}^{m}= \displaystyle \max _{1 \le i=i_{0}\le i_{1}\le \cdots \le i_{m-1}\le j=i_{m} \le n} a_{ii_{1}}a_{i_{1}i_{2}}\ldots a_{i_{m-1}j},~~~ \forall ~ m \ge 1. \end{aligned}$$
(9)

It now follows from (9) that

$$\begin{aligned} \lim _{m\rightarrow \infty } \frac{l(W_{\max }(A^{m+1} _{\otimes }))}{l(W_{\max }(A^{m} _{\otimes }))}= \lim _{m\rightarrow \infty } \frac{a_{nn} ^{m+1} -a_{11}^{m+1}}{a_{nn} ^{m} - a_{11}^{m}} =a_{nn}, \end{aligned}$$

which completes the proof. \(\square\)

3 Max joint numerical ranges

Recall that the joint numerical range of a k-tuple \((A_{1}, \ldots , A_{k}),\) where \(A_{i} \in M_{n}, i=1,\ldots , k,\) is defined by ( [2, 12])

$$\begin{aligned} W(A_{1}, \ldots , A_{k})=\{(x^{*}A_{1}x,\ldots , x^{*}A_{k}x): x \in S^{1} \}, \end{aligned}$$

where \(S^{1}=\{x \in {\mathbb {C}}^{n}: x^{*}x=1 \}.\) So, one can define the max joint numerical range of a k-tuple of \(n \times n\) nonnegative matrices \({\mathbb {A}}=(A_{1}, \ldots , A_{k})\) in the following way:

$$\begin{aligned} W_{\max }({\mathbb {A}})=\{(x^{t} \otimes A_{1}\otimes x,\ldots , x^{t}\otimes A_{k}\otimes x): ~ x \in {{\mathbb {R}} }_{+}^n,\,{x^t} \otimes x = 1 \}. \end{aligned}$$
(10)

Remark 3

Note that it follows from the above definition that \((a_{1}, \ldots , a_{k}) \in W_{\max }(A_{1}, \ldots , A_{k})\) if and only if there exists \(x \in {{\mathbb {R}} }_{+}^n,\,{x^t} \otimes x = 1\) such that \(a_{i}=x^{t} \otimes A_{i}\otimes x,\) for all \(1\le i \le k.\)

From Theorem 2 and Remark 3 we conclude the following result.

Corollary 2

If \({\mathbb {A}}=(A_{1}, \ldots , A_{k})\) such that \(A_{l}=(a_{ij}^{(l)})\in M_{n}({\mathbb {R}}_{+}), l=1,\ldots , k,\) then

$$\begin{aligned} W_{\max }({\mathbb {A}})\subseteq [s_{1}, t_{1}]\times \cdots \times [s_{k}, t_{k}] \subseteq {\mathbb {R}}_{+}^{k}, \end{aligned}$$

where \(t_{l}=\displaystyle \max _{1 \le i,j \le n}a_{ij}^{(l)}\) and \(s_{l}=\displaystyle \min _{1 \le i \le n} a_{ii}^{(l)}\) for all \(1 \le l \le k.\) Consequently, \(W_{\max }({\mathbb {A}})\) is a compact set.

Next we define a max joint numerical range \(W_{\max }(\varSigma )\) of a bounded set \(\varSigma\) of \(n \times n\) nonnegative matrices in the following way:

$$\begin{aligned} W_{\max }(\varSigma ) = \cup _{A \in \varSigma } W_{\max }(A). \end{aligned}$$

By Theorem 2, we have

$$\begin{aligned} W_\text {max} (\varSigma ) =\bigcup _{A\in \varSigma }\left[ \min _{1 \le i \le n} a_{ii}, \max _{1 \le i, j \le n} a_{ij}\right] . \end{aligned}$$
(11)

Recall that the supremum matrix \(S(\varSigma )\) is defined by

$$\begin{aligned} S(\varSigma )_{ij}=\sup _{A \in \varSigma }a_{ij} \end{aligned}$$

and that the generalized (joint) spectral radius \(\mu (\varSigma )\) of \(\varSigma\) is equal to ([5, 6, 9, 10, 13])

$$\begin{aligned} \mu (\varSigma )= \limsup _{m \rightarrow \infty }\left( \sup _{A \in \varSigma _{\otimes }^{m}}\mu (A)\right) ^{\frac{1}{m}}= \sup _{m \in {\mathbb {N}}}\left( \sup _{A \in \varSigma _{\otimes }^{m}}\mu (A)\right) ^{\frac{1}{m}}, \end{aligned}$$

where \(\varSigma _{\otimes }^{m}=\{A_{1}\otimes A_{2}\otimes \ldots \otimes A_{m}: A_{i} \in \varSigma \}\). The max Berger Wang formula asserts that ([9, 10, 13])

$$\begin{aligned} \mu (\varSigma )=\lim _{m\rightarrow \infty }\left( \sup _{A \in \varSigma _{\otimes }^{m}} \Vert A \Vert \right) ^{\frac{1}{m}} = \inf _{m\in {\mathbb {N}}}\left( \sup _{A \in \varSigma _{\otimes }^{m}} \Vert A \Vert \right) ^{\frac{1}{m}} , \end{aligned}$$

where \(\Vert A \Vert = \max _{i,j =1, \ldots , n} a_{ij}\) (since all norms on \({\mathbb {R}}^{n\times n}\) are equivalent one can use here any norm on \({\mathbb {R}}^{n\times n}\)). We also have \(\mu (\varSigma )=\mu (S(\varSigma ))\), \(\displaystyle \Vert \varSigma \Vert =\!\!\!\!\!\!\!\sup _{A\in \varSigma , i,j=1, \ldots , n}\!\!\!\!\!\!\!\!\!\!a_{ij}=\Vert S(\varSigma ) \Vert\) and

$$\begin{aligned} \mu (\varSigma )=\limsup _{m\rightarrow \infty }\left( \sup _{A \in \varSigma _{\otimes }^{m} } tr_{\otimes }(A)\right) ^{\frac{1}{m}}, \end{aligned}$$
(12)

where \(tr_{\otimes }(A)=\displaystyle \max _{i=1, \ldots , n}a_{ii}\) ([10, Theorem 3.3.]).

By (11), the following result follows.

Corollary 3

If \(\varSigma\) is a bounded set of \(n \times n\) nonnegative matrices, then

$$\begin{aligned} \inf _{A \in \varSigma , i=1, \ldots , n}\!\!\!\!\!\!a_{ii}= \inf W_\text {max}(\varSigma ) \le \mu (\varSigma ) \le \sup W_\text {max}(\varSigma )=\Vert \varSigma \Vert \end{aligned}$$

4 k-numerical range, k-geometric max spectrum and k-tropical spectrum

Now, we introduce and study the max \(k-\)numerical range, where \(k \le n\) is a positive integer. Let \(I_{k}\) denote the \(k \times k\) identity matrix. A matrix \(X \in M_{n \times k}({\mathbb {R}}_{+})\) is called an isometry in max algebra if \(X^{t}\otimes X = I_{k},\) and the set of all \(n \times k\) isometry matrices in max algebra is denoted by \({\mathcal {X}}_{n \times k}.\) For the case \(k = n,\)\({\mathcal {X}}_{n \times n}\) is equal to \({\mathcal {U}}_{n},\) which was introduced in Definition 2.

Definition 3

For \(A \in M_{n}({\mathbb {R}}_{+})\) with \(k \le n,\) the max \(k-\)numerical range of A is defined and denoted by

$$\begin{aligned} W_\text {max}^{k}(A)= & {} \left\{\bigoplus _{i=1}^{k} x_{i}^{t}\otimes A \otimes x_{i}: ~X=[x_{1}, x_{2}, \ldots , x_{k}] \in {\mathcal {X}}_{n \times k} \right\}\\= & {} \left\{tr_{\otimes }(X^{t}\otimes A \otimes X):~ X=[x_{1}, x_{2}, \ldots , x_{k}] \in {\mathcal {X}}_{n \times k} \right\}. \end{aligned}$$

It is clear that \(W_\text {max}^{1}(A)=W_\text {max}(A),\) so the notion of max \(k-\)numerical range is a generalization of the max numerical range of matrices.

Note that

$$\begin{aligned} tr_{\otimes }(X^{t}\otimes A\otimes X)=x_{1}^{t}\otimes A\otimes x_{1}\oplus x_{2}^{t}\otimes A\otimes x_{2}\oplus \cdots \oplus x_{k}^{t}\otimes A\otimes x_{k}, \end{aligned}$$

where \(1 \le i, j \le k\) and \(x_{i}, x_{j} \in {\mathbb {R}}_{+}^{n},\)

$$\begin{aligned} x_{i}^{t}\otimes x_{j}=\delta _{ij}= {\left\{ \begin{array}{ll} 1 &{} i=j \\ 0 &{} i \ne j. \end{array}\right. } \end{aligned}$$

Remark 4

For a nonnegative matrix \(A=(a_{ij})\) and \(1 \le k\le n\), the map \(f_{A}: {\mathcal {X}}_{n \times k}\longrightarrow {\mathbb {R}}_{+}\) is locally Lipschitz continuous on \({\mathcal {X}}_{n \times k},\) where

$$\begin{aligned} {\mathcal {X}}_{n \times k}=\{X \in M_{n \times k}({\mathbb {R}}_{+}):~X^t\otimes X =I_{k} \},~f_{A}(X):=tr_{\otimes }(X^{t}\otimes A \otimes X) \end{aligned}$$

Note that \(W_{\max }^{k}(A)\) is the image of the continuous function \(f_{A}.\) Using connectivity and compactness of \({\mathcal {X}}_{n \times k},~ W_{\max }^{k}(A)\) is a connected and compact set.

We have the following explicit formula for \(W_{\max }^{k}(A).\)

Theorem 3

Suppose that \(A=(a_{ij})\in M_{n}({\mathbb {R}}_{+})\) and let \(1 \le k \le n\) be a positive integer. We have

$$\begin{aligned} W_{\max }^{k}(A)=[c, d], \end{aligned}$$
(13)

where \(\displaystyle c=\min \{\bigoplus _{j=1}^{k} a_{i_{j}i_{j}}: 1 \le i_{1}< i_{2}< \cdots < i_{k} \le n \}\) and \(\displaystyle d=\max _{1 \le i, j\le n}a_{ij}.\)

Proof

By Definition 3 and Theorem 2, it follows that \(\min W_{\max }^{k}(A)=c\) and \(\max W_{\max }^{k}(A) =d\). Since \(W_{\max }\) is a connected set, by Remark 4, this implies (13). \(\square\)

In the following theorem, we state some basic properties of the max \(k-\)numerical range of matrices.

Theorem 4

Let \(A \in M_{n}({\mathbb {R}}_{+})\) and \(1\le k \le n\). Then the following assertions hold:

  1. (i)

    \(W_{\max }^{k}(\alpha A \oplus \beta I)= \alpha W_{\max }^{k}(A )\oplus \beta\) and \(W_{\max }^{k}(A \oplus B)\subseteq W_{\max }^{k}(A)\oplus W_{\max }^{k}(B),\) where \(\alpha , \beta \in {\mathbb {R}}_{+}\) and \(B \in M_{n}({\mathbb {R}}_{+});\)

  2. (ii)

    \(W_{\max }^{k}(U^{t}\otimes A\otimes U)=W_{\max }^{k}(A)\) if \(U \in {\mathcal {U}}_{n};\)

  3. (iii)

    f \(B \in M_{m}({\mathbb {R}}_{+})\) is a principal submatrix of A and \(k \le m,\) then \(W_{\max }^{k}(B) \subseteq W_{\max }^{k}(A).\) Consequently, if \(V= [e_{i_{1}}, e_{i_{2}}, \ldots , e_{i_{s}}] \in M_{n \times s}({\mathbb {R}}_{+}),\) where \(1 \le s \le n\), then \(W_\text {max}^{k}(V^{t}\otimes A\otimes V ) \subseteq W_\text {max}^{k}(A ),\) and the equality holds if s = n;

  4. (iv)

    \(W_{\max }^{k}(A^{t})=W_{\max }^{k}(A)\);

  5. (v)

    If \(k < n,\) then \(W_{\max }^{k+1}(A) \subseteq W_{\max }^{k}(A).\) Consequently,

    $$\begin{aligned} W_{\max }^{n}(A) \subseteq W_{\max }^{n-1}(A) \subseteq \cdots \subseteq W_{\max }^{2}(A) \subseteq W_{\max }(A). \end{aligned}$$

Proof

The properties (i), (ii), (iii) and (iv) easily follow from Theorem 3 (or directly from Definition 3).

To prove (v),  let \(z \in W_{\max }^{k+1}(A)\) be given. So, by Definition 3, there exist \(1 \le i_{1} \le i_{2} \le \ldots \le i_{k}\le i_{k+1}\le n,\)\(X=[x_{i_{1}}, x_{i_{2}}, \ldots , x_{i_{k}}, x_{i_{k+1}}] \in {\mathcal {X}}_{n \times (k+1)}\) such that

$$\begin{aligned} z=\bigoplus _{i=i_{1}}^{i_{k+1}} x_{i}^{t}\otimes A \otimes x_{i}. \end{aligned}$$

Now, one can assume that, without loss of generality,

$$\begin{aligned} x_{i_{1}}^{t}\otimes A \otimes x_{i_{1}} \le \cdots \le x_{i_{k}}^{t}\otimes A \otimes x_{i_{k}} \le x_{i_{k+1}}^{t}\otimes A \otimes x_{i_{k+1}}. \end{aligned}$$

Hence, by setting \(X=[ x_{i_{2}}, \ldots , x_{i_{k}}, x_{i_{k+1}}],\) we have \(X \in {\mathcal {X}}_{n \times k}\) and so

$$\begin{aligned} z=\bigoplus _{i=i_{2}}^{i_{k+1}} x_{i}^{t}\otimes A \otimes x_{i}. \end{aligned}$$

This implies that \(z \in W_{\max }^{k}(A)\) and the proof is complete.

\(\square\)

The following example illustrates Theorem 4 (v).

Example 3

If

$$\begin{aligned} A=\left[ \begin{array}{cccc} 4 &{} 7 &{} 5 &{} 8 \\ 8 &{} 2 &{} 0 &{} 7 \\ 2 &{} 8 &{} 1 &{} 4\\ 1 &{} 6 &{} 2 &{} 2 \end{array} \right] , \end{aligned}$$

then

$$\begin{aligned} W_{\max }^{ 1}( A)=W_{\max }( A)=[1, 8],~ W_{\max }^{ 2}( A)=[2, 8],~W_{\max }^{ 3}( A)=[2, 8],~W_{\max }^{ 4}( A)=[4, 8]. \end{aligned}$$

Similarly as in the classical linear case, we define below max k-geometric spectrum and k-tropical spectrum of \(A \in M_{n}({\mathbb {R}}_{+})\).

Definition 4

Let \(A \in M_{n}({\mathbb {R}}_{+})\), \(1\le k \le n\) and let \(\mu _{1}, . . . , \mu _{n} \in \sigma _{\max } (A)\) counting standard vector multiplicities. The max k-geometric spectrum of A is defined by

$$\begin{aligned} \sigma _\text {max}^{k}(A)=\left\{ \bigoplus _{j=1}^{k} \mu _{i_{j}}: 1 \le i_{1}< i_{2}< \cdots < i_{k} \le n \right\}. \end{aligned}$$

Definition 5

Let \(A \in M_{n}({\mathbb {R}}_{+})\), \(1\le k \le n\) and let \(\lambda _{1}, . . . , \lambda _{n} \in \sigma _\text {trop} (A)\) counting tropical multiplicities. The k-tropical max spectrum of A is defined by

$$\begin{aligned} \sigma _\text {trop}^{k}(A)=\left\{ \bigoplus _{j=1}^{k} \lambda _{i_{j}}: 1 \le i_{1}< i_{2}< \cdots < i_{k} \le n \right\}. \end{aligned}$$

It is clear that \(\sigma _{\max }^{1}(A)=\sigma _{\max }(A)\) and \(\sigma _\text {trop}^{1}(A)=\sigma _\text {trop}(A)\).

Recall that the max convex hull of a set \(M \subseteq {\mathbb {R}}_{+},\) which is denoted by \(conv_{\otimes }(M),\) is defined as the set of all max convex linear combinations of elements of M,  i.e.,

$$\begin{aligned} conv_{\otimes }(M) :=\{\bigoplus _{i=1}^{m} \alpha _{i} x_{i}: m \in {\mathbb {N}}, x_{i} \in M,~ \alpha _{i} \ge 0, i=1,\ldots , m, ~ \bigoplus _{i=1}^{m} \alpha _{i}=1 \}. \end{aligned}$$

By Definitions 4 and 5, it is obvious that

$$\begin{aligned}&conv_{\otimes }(\sigma _\text {max}^{k}(A))=\left[ \min \!\!\!\!\!\!\!\bigoplus _{1 \le i_{1}< i_{2}< \cdots < i_{k} \le n} \!\!\!\!\!\!\!\!\!\!\!\!\!\mu _{i_{j}},~\max _{1 \le i \le n}\mu _{i}\right] , ~ \forall ~ 1 \le k \le n, ~ 1\le j \le k, \end{aligned}$$
(14)
$$\begin{aligned}&conv_{\otimes }(\sigma _\text {trop}^{k}(A))=\left[ \min \!\!\!\!\!\!\!\bigoplus _{1 \le i_{1}< i_{2}< \cdots < i_{k} \le n} \!\!\!\!\!\!\!\!\!\!\!\!\!\lambda _{i_{j}},~ \max _{1 \le i \le n}\lambda _{i}\right] , ~ \forall ~ 1 \le k \le n, ~ 1\le j \le k. \end{aligned}$$
(15)

Since \(\sigma _{\max } (A) \subset \sigma _\text {trop} (A) \subset W_\text {max} (A)\), the following result follows from Definitions 4, 5 and 3 and Theorems 2 and 3.

Proposition 7

Let \(A\in M_{n}({\mathbb {R}}_{+})\) and \(1 \le k\le n\). Then \(conv_{\otimes }(\sigma _\text {max}^{k}(A)) \subset W_\text {max} ^k (A)\) and \(conv_{\otimes }(\sigma _\text {trop}^{k}(A)) \subset W_\text {max} ^k (A)\).

By Theorem 3, (14) and (15), we have the following two results.

Proposition 8

Let \(A\in M_{n}({\mathbb {R}}_{+}),\)\(1 \le k\le n\) and let \(\mu _{1}, . . . , \mu _{n} \in \sigma _{\max } (A)\) counting standard vector multiplicities. If \(\displaystyle \min _{1 \le i_{1}< \cdots< i_{k}\le n} \oplus \mu _{i_{j}}=\min _{1 \le i_{1}< \cdots < i_{k}\le n}\oplus a_{i_{j}i_{j}}\) and \(\displaystyle \mu (A)=\max _{1 \le i, j \le n}a_{ij},\) then

$$\begin{aligned} conv_{\otimes }(\sigma _\text {max}^{k}(A)) = W_\text {max} ^k (A). \end{aligned}$$

Proposition 9

Let \(A\in M_{n}({\mathbb {R}}_{+}),\)\(1 \le k\le n\) and let \(\lambda _{1}, . . . , \lambda _{n} \in \sigma _\text {trop} (A)\) counting tropical multiplicities. If \(\displaystyle \min _{1 \le i_{1}< \cdots< i_{k}\le n} \oplus \lambda _{i_{j}}=\min _{1 \le i_{1}< \cdots < i_{k}\le n}\oplus a_{i_{j}i_{j}}\) and \(\displaystyle \mu (A)=\max _{1 \le i, j \le n}a_{ij}\), then

$$\begin{aligned} conv_{\otimes }(\sigma _\text {trop}^{k}(A)) = W_\text {max} ^k (A). \end{aligned}$$

Remark 5

Let \(A\in M_{n}({\mathbb {R}}_{+})\) be irreducible and let \(1 \le k\le n\). Then \(\mu (A)\) is a unique geometric max eigenvalue of A,  and so for all \(1 \le k\le n,\) we have

$$\begin{aligned} \sigma _\text {max}^{k}(A)= W_\text {max} ^k (B)=\{\mu (A) \}, \end{aligned}$$

where \(B=(b_{ij}) \in M_{n}({\mathbb {R}}_{+})\) such that \(\displaystyle b_{ii}=\mu (A)=\max _{1 \le i, j \le n}b_{ij}, 1 \le i \le n\).

In the following result we state the relationship between the max \(k-\)geometric spectrums of A.

Proposition 10

Let \(A\in M_{n}({\mathbb {R}}_{+})\) and \(1 \le k< n\). Then \(\sigma _\text {max}^{k+1}(A) \subseteq \displaystyle \sigma _\text {max}^{k}(A).\) Consequently,

$$\begin{aligned} \displaystyle \{ \mu (A)\}=\sigma _\text {max}^{n}(A) \subseteq \sigma _\text {max}^{n-1}(A) \subseteq \cdots \subseteq \sigma _\text {max}^{2}(A) \subseteq \sigma _{\otimes }(A). \end{aligned}$$

Proof

At first, let \(z \in \sigma _\text {max}^{k+1}(A)\) be given. By Definition 4 there exists \(1 \le i_{1}< i_{2}< \cdots < i_{k+1} \le n\) such that \(z=\displaystyle \bigoplus _{j=1}^{k+1} \mu _{i_{j}}.\) Since \(z=\displaystyle \bigoplus _{j=1}^{k+1} \mu _{i_{j}}=\bigoplus _{p=1}^{k} \mu _{j_{p}}\in \sigma _\text {max}^{k}(A)\), the proof is complete. \(\square\)

The following example from [11] illustrates the result above.

Example 4

Let

$$\begin{aligned} A=\left[ \begin{array}{lllll} 2 &{} 0 &{} 0 &{} 0 &{} 0 \\ 1 &{} 3 &{} 0 &{} 0 &{} 0 \\ 1 &{} 0 &{} 1 &{} 1 &{} 0\\ 0 &{} 0 &{} 1 &{} 2 &{} 0\\ 0 &{} 0 &{} 0 &{} 0 &{} 1 \end{array} \right] . \end{aligned}$$

Then [11, Example 2.13.],

$$\begin{aligned} r_{e_{1}}(A)=r_{e_{2}}(A)=3, r_{e_{3}}(A)=r_{e_{4}}(A)=2, r_{e_{5}}(A)=1, \end{aligned}$$

where the \(r_{e_{j}}(A)\)’s are the max geometric eigenvalues of A. One can easily check that

$$\begin{aligned} \sigma _\text {max}^{5}(A)=\{3 \}, \sigma _\text {max}^{4}(A)=\{3 \}, \sigma _\text {max}^{3}(A)=\{2, 3\}, \sigma _\text {max}^{2}(A)=\{2, 3 \}, \sigma _\text {max}^{1}(A)=\{1, 2, 3 \}. \end{aligned}$$

Also

$$\begin{aligned} conv_{\otimes }(\sigma _\text {max}^{1}(A))=[1, 3],\; conv_{\otimes }(\sigma _\text {max}^{2}(A))=[2, 3], \; conv_{\otimes }(\sigma _\text {max}^{3}(A))=[2, 3], \end{aligned}$$

\(conv_{\otimes }(\sigma _\text {max}^{4}(A))=\{3 \}\) and \(conv_{\otimes }(\sigma _\text {max}^{5}(A))=\{3 \}.\)

The following analogue of Proposition 10 for the \(k-\)tropical spectrum is proved in a similar way as Proposition 10.

Proposition 11

Let \(A\in M_{n}({\mathbb {R}}_{+})\) and \(1 \le k< n\). Then \(\sigma _\text {trop}^{k+1}(A) \subseteq \displaystyle \sigma _\text {trop}^{k}(A).\) Consequently,

$$\begin{aligned} \displaystyle \{ \mu (A)\}=\sigma _\text {trop}^{n}(A) \subseteq \sigma _\text {trop}^{n-1}(A) \subseteq \cdots \subseteq \sigma _\text {trop}^{2}(A) \subseteq \sigma _\text {trop}(A). \end{aligned}$$

Remark 6

It is also possible to consider the max algebra analogues of a related object from the usual algebra, namely the max algebra analogues of a higher-rank numerical range of a matrix B (cf. [4, 16]). We do not study these objects in this article and leave this for further research.

5 Max c-numerical range and max C-numerical range

Let \(A, C \in M_{n}({\mathbb {R}}_{+})\) and \(c \in {\mathbb {R}}_{+}^{n}.\) Next we define and study max c-numerical range and max C-numerical range of \(A \in M_{n}({\mathbb {R}}_{+})\). To access more information about some known results in the complex case, see [8, Chapter1].

Definition 6

Let \(A \in M_{n}({\mathbb {R}}_{+})\) and \(c=[c_{1}, c_{2}, \ldots , c_{n}]^{t} \in {\mathbb {R}}_{+}^{n}.\) The max \(c-\)numerical range of A is defined and denoted by

$$\begin{aligned} W_\text {max}^{c}(A)=\{\bigoplus _{i=1}^{n} c_{i}x_{i}^{t}\otimes A \otimes x_{i}:~X=[x_{1}, x_{2}, \ldots , x_{n}] \in M_{n}({\mathbb {R}}_{+}), ~X^{t}\otimes X=I_{n} \}. \end{aligned}$$

In Definition 6, it’s obvious that \(X \in {\mathcal {U}}_{n},\) where the notation \({\mathcal {U}}_{n}\) was denoted in (2).

It is clear that \(W_\text {max}^{c}(A)=\{tr_{\otimes }(C\otimes X^{t}\otimes A \otimes X): X \in {\mathcal {U}}_{n} \},\) where \(C=diag(c_{1}, \ldots , c_{n}), c=[c_{1}, c_{2}, \ldots , c_{n}]^{t} \in {\mathbb {R}}_{+}^{n}.\) Also, one can easily verify

$$\begin{aligned} W_\text {max}^{c}(A)=\{ c_{k}(\oplus _{i=1}^{n}a_{ii}): k=1,2, \ldots , n \}, \end{aligned}$$

and, consequently,

$$\begin{aligned} conv_{\otimes }(W_\text {max}^{c}(A))=[\min _{1 \le k \le n}c_{k}(\oplus _{i=1}^{n}a_{ii}),~ \oplus _{k=1}^{n}c_{k}(\oplus _{i=1}^{n}a_{ii})]. \end{aligned}$$

Remark 7

Let \(A \in M_{n}({\mathbb {R}}_{+})\) and \(c=[\alpha , \ldots , \alpha ]^{t} \in {\mathbb {R}}_{+}^{n}.\) Then

$$\begin{aligned} W_\text {max}^{c}(A)=\{tr_{\otimes }(\alpha X^{t}\otimes A \otimes X): X \in {\mathcal {U}}_{n} \}. \end{aligned}$$

Since \(tr_{\otimes }( X^{t}\otimes A \otimes X)=tr_{\otimes }(A)\) for \(X \in {\mathcal {U}}_{n}\) it follows that

$$\begin{aligned} W_\text {max}^{c}(A)=\{\alpha tr_{\otimes }(A) \}. \end{aligned}$$

Next we introduce and study the notion of max \(C-\)numerical range of non-negative matrices, where \(C\in M_{n}({\mathbb {R}}_{+}).\)

Definition 7

Let \(A, C \in M_{n}({\mathbb {R}}_{+}).\) The max \(C-\)numerical range of A is defined and denoted by

$$\begin{aligned} W_{\max }^{C}(A)= \displaystyle \{tr_{\otimes }(C \otimes X^{t}\otimes A \otimes X):~X=[x_{1}, x_{2}, \ldots , x_{n}] \in {\mathcal {U}}_{n} \} \end{aligned}$$

Example 5

Let \(C=(c_{ij}) \in M_{n}({\mathbb {R}}_{+})\) such that \(c_{11}=1\) and \(c_{ij}=0\) elsewhere. Then one can easily obtain that

$$\begin{aligned} conv_{\otimes }(W_\text {max}^{C}(A))=[\min _{1 \le i \le n}a_{ii}, \oplus _{i=1}^{n}a_{ii}]. \end{aligned}$$

In the following theorem, we state some basic properties of the max \(C-\)numerical range of non-negative matrices.

Theorem 5

Let \(A, C \in M_{n}({\mathbb {R}}_{+}).\) Then the following assertions hold:

  1. (i)

    \(\displaystyle W_\text {max}^{C}(\alpha A\oplus \beta I_{n})=\alpha W_\text {max}^{C}(A)\oplus \beta tr_{\otimes }(C),\) where \(\alpha , \beta \in {\mathbb {R}}_{+};\)

  2. (ii)

    \(W_{\max }^{C}(A\oplus B) \subseteq W_{\max }^{C}(A)\oplus W_{\max }^{C}(B)\) and \(W_{\max }^{C\oplus D}(A) \subseteq W_{\max }^{C}(A)\oplus W_{\max }^{D}(A),\) where \(B,D \in M_{n}({\mathbb {R}}_{+});\)

  3. (iii)

    \(W_{\max }^{C}(U^{t}\otimes A\otimes U)= W_{\max }^{C}(A),\) where \(U\in U_{n};\)

  4. (iv)

    If \(C^{t}=C,\) then \(W_{\max }^{C}( A^{t})= W_{\max }^{C}(A);\)

  5. (v)

    If \(C=\alpha I_{n},\) where \(\alpha \in {\mathbb {R}}_{+},\) then \(W_{\max }^{C}(A)=\{ \alpha tr_{\otimes }(A) \}.\)

  6. (vi)

    \(W_{\max }^{ C}( A)=W_{\max }^{ A}( C).\)

  7. (vii)

    \(W_{\max }^{V^{t}\otimes C\otimes V}( A)=W_{\max }^{C}(A),\) where \(V \in {\mathcal {U}}_{n}.\)

Proof

The assertions (i), (ii), (iii), (iv), (v) and (vi) follow easily from Definition 7.

To prove (vii), let \(z \in W_{\max }^{V^{t}\otimes C\otimes V}( A)\) be given. Then by Definition 7, there exists \(X \in {\mathcal {U}}_{n},\) such that \(z=tr_{\otimes }(V^{t}\otimes C\otimes V\otimes X^{t}\otimes A \otimes X).\) Since

$$\begin{aligned} tr_{\otimes }\left( V^{t}\otimes C\otimes V\otimes X^{t}\otimes A \otimes X\right) =tr_{\otimes }\left( C\otimes ( X\otimes V^{t})^{t}\otimes A \otimes (X \otimes V^{t})\right) . \end{aligned}$$

By setting \(U=X\otimes V^{t} \in {\mathcal {U}}_{n}\), one has \(z \in W_{\max }^{ C}( A),\) and so

$$\begin{aligned} W_{\max }^{V^{t}\otimes C\otimes V}( A) \subseteq W_{\max }^{ C}( A). \end{aligned}$$

In a similar way the reverse inclusion can easily be verified. \(\square\)

The following result is a special case of Theorem5.

Corollary 4

Let \(A \in M_{n}({\mathbb {R}}_{+})\) and \(c = [c_{1}, \ldots , c_{n}]^{t} \in {\mathbb {R}}_{+}^{n}.\) Then the following assertions hold:

  1. (i)

    \(\displaystyle W_\text {max}^{c}(\alpha A\oplus \beta I_{n})=\alpha W_\text {max}^{c}(A)\oplus \beta \bigoplus _{i=1}^{n} c_{i},\) where \(\alpha , \beta \in {\mathbb {R}}_{+};\)

  2. (ii)

    \(W_{\max }^{c}(U^{t}\otimes A\otimes U)=W_{\max }^{c}(A),\) where \(U \in {\mathcal {U}}_{n};\)

  3. (iii)

    \(W_{\max }^{c}(A\oplus B) \subseteq W_{\max }^{c}(A)\oplus W_{\max }^{c}(B)\) and \(W_{\max }^{c\oplus d}(A) \subseteq W_{\max }^{c}(A)\oplus W_{\max }^{d}(A),\) where \(d \in {\mathbb {R}}_{+}^{n}\) and \(B \in M_{n}({\mathbb {R}}_{+});\)

  4. (iv)

    \(W_{\max }^{c}(A^{t})=W_{\max }^{c}(A);\)

  5. (v)

    If \(A = \alpha I_{n},\) where \(\alpha \in {\mathbb {R}}_{+},\) then \(\displaystyle W_{\max }^{c}(A)=\{\alpha \bigoplus _{i=1}^{n} c_{i}\}.\)