Skip to main content
Log in

Representations of Green’s function of the bounded solutions problem for a differential-algebraic equation

  • Original Paper
  • Published:
Banach Journal of Mathematical Analysis Aims and scope Submit manuscript

Abstract

The equation \(\bigl (Fu'\bigr )(t)=\bigl (Gu\bigr )(t)+f(t)\), \(t\in {\mathbb {R}}\), where F and G are bounded linear operators, is considered. It is assumed that infinity is a pole of the resolvent of the pencil \(\lambda \mapsto \lambda F-G\) and the spectrum of the pencil is disjoint from the imaginary axis. Under these assumptions, to each free term f bounded on \({\mathbb {R}}\) (in the sense of distributions) there corresponds a unique bounded solution u and \(u(t)=\int _{-\infty }^{\infty }{\mathcal {G}}(s)f(t-s)\,ds\). The kernel \({\mathcal {G}}\) is called Green’s function. In this paper, the representations of Green’s function based on functional calculus in Banach algebras are constructed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  1. Arendt, W., Batty, C.J.K., Hieber, M., Neubrander, F.: Vector-valued Laplace Transforms and Cauchy Problems. Monographs in Mathematics, vol. 96, 2nd edn. Birkhäuser/Springer Basel AG, Basel (2011)

  2. Ascher, U.M., Petzold, L.R.: Computer Methods for Ordinary Differential Equations and Differential-Algebraic Equations. Society for Industrial and Applied Mathematics (SIAM), Philadelphia (1998)

    Book  Google Scholar 

  3. Benner, P., Stykel, T.: Model order reduction for differential-algebraic equations: a survey. In: Surveys in Differential-algebraic Equations. IV, Differ.-Algebr. Equ. Forum. Springer, Cham, pp. 107–160 (2017)

  4. Bourbaki, N.: Éléments de mathématique. Fascicule XXXII. Théories spectrales. Chapitre I: Algèbres normées. Chapitre II: Groupes localement compacts commutatifs. Actualités Scientifiques et Industrielles, No. 1332. Hermann, Paris (1967) (in French)

  5. Bourbaki, N.: Topological vector spaces. In: Chapters 1–5. Elements of Mathematics. Springer, Berlin (1987)

  6. Brychkov, Y.A., Prudnikov, A.P.: Integral Transforms of Generalized Functions. Gordon and Breach Science Publishers, New York (1989)

    MATH  Google Scholar 

  7. Budak, B.M., Fomin, S.V.: Multiple Integrals, Field Theory and Series. An Advanced Course in Higher Mathematics. Mir Publishers, Moscow (1978)

    MATH  Google Scholar 

  8. Chicone, C., Latushkin, Y.: Evolution semigroups in dynamical systems and differential equations. In: Mathematical Surveys and Monographs, vol. 70. American Mathematical Society, Providence (1999)

  9. Daleckiĭ, J.L., Kreĭn, M.G.: Stability of solutions of differential equations in Banach space. In: Translations of Mathematical Monographs, vol. 43. American Mathematical Society, Providence (1974)

  10. Golub, G.H., Van Loan, C.F.: Matrix computations, 4th edn. In: Johns Hopkins Studies in the Mathematical Sciences. Johns Hopkins University Press, Baltimore (2013)

  11. Hairer, E., Lubich, C., Roche, M.: The Numerical Solution of Differential-Algebraic Systems by Runge-Kutta Methods, vol. 1409. Springer, Berlin (1989). Lecture Notes in Mathematics

    Book  Google Scholar 

  12. Henry, D.: Geometric Theory of Semilinear Parabolic Equations, vol. 840. Springer, Berlin (1981). Lecture Notes in Mathematics

    Book  Google Scholar 

  13. Hille, E., Phillips, R.S.: Functional analysis and semi-groups. In: American Mathematical Society Colloquium Publications, vol. 31. American Mathematical Society, Providence (1957)

  14. Kurbatov, V.G.: Bounded solutions of differential-difference equations. Sibirskii Matematicheskii Zhurnal 27(1), 86–99 (1986). (in Russian); English translation in Siberian Mathematical Journal, 27(1), 68–79 (1986)

  15. Kurbatov, V.G., Kurbatova, I.V.: Krylov subspace methods of approximate solving differential equations from the point of view of functional calculus. Eurasian Math. J. 3(4), 53–80 (2012)

    MathSciNet  MATH  Google Scholar 

  16. Kurbatov, V.G., Kurbatova, I.V.: Computation of Green’s function of the bounded solutions problem. Comput. Methods Appl. Math. 18(4), 673–685 (2018)

    Article  MathSciNet  Google Scholar 

  17. Kurbatova, I.V.: A Banach algebra associated with a linear operator pencil. Mat. Zametki 86(3), 394–401 (2009). (in Russian); English translation in Math. Notes, 86(3), 361–367 (2009)

  18. Lavrent’ev, M.A., Shabat, B.V.: Methods of the Theory of Complex Variable Functions, 3rd edn. Izdat. “Nauka”, Moscow (1965). (in Russian); translated into German by VEB Deutscher Verlag der Wissenschaften, Berlin (1967)

  19. Massera, J.L., Schäffer, J.J.: Linear Differential Equations and Function Spaces, Pure and Applied Mathematics, vol. 21. Academic Press, New York (1966)

    MATH  Google Scholar 

  20. Markus, A.S.: Introduction to the Spectral Theory of Polynomial Operator Pencils, Translations of Mathematical Monographs, vol. 71. American Mathematical Society, Providence (1988)

  21. Pankov, A.A.: Bounded and Almost Periodic Solutions of Nonlinear Operator Differential Equations, Mathematics and its Applications (Soviet Series), vol. 55. Kluwer Academic Publishers, Dordrecht (1990). Translated from the 1985 Russian edition

  22. Pechkurov, A.V.: On the invertibility in the Schwartz space of the operator induced by a pencil with the slowly growing resolvent. Vestnik Voronezhskogo gosudarstvennogo universiteta. Seriya: Fizika. Matematika [Proceedings of Voronezh State University. Series: Physics. Mathematics] (2), 122–128 (2011) (in Russian)

  23. Pechkurov, A.V.: Bisectorial operator pencils and the problem of bounded solutions. Izv. Vyssh. Uchebn. Zaved. Mat. (3, 31–41 (2012). (in Russian); English translation in Russian Math. (Iz. VUZ), 56(3), 26–35 (2012)

  24. Rabier, P.J., Rheinboldt, W.C.: Classical and generalized solutions of time-dependent linear differential-algebraic equations. Linear Algebra Appl. 245, 259–293 (1996)

    Article  MathSciNet  Google Scholar 

  25. Rudin, W.: Functional Analysis, 1st edn. McGraw-Hill Series in Higher Mathematics. McGraw-Hill Book Co., New York (1973)

  26. Schiff, J.L.: The Laplace Transform. Undergraduate Texts in Mathematics. Theory and Applications. Springer, New York (1999)

    Book  Google Scholar 

  27. Schwartz, L.: Théorie des distributions à valeurs vectorielles. I. Ann. Inst. Fourier. Grenoble 7, 1–141 (1957)

    Article  Google Scholar 

  28. Schwartz, L.: Théorie des distributions à valeurs vectorielles. II. Ann. Inst. Fourier. Grenoble 8, 1–209 (1958)

    Article  Google Scholar 

  29. Trostorff, S. and Waurick, M.: On Higher Index Differential-algebraic Equations in Infinite Dimensions, The Diversity and Beauty of Applied Operator Theory, Oper. Theory Adv. Appl., vol. 268. Birkhäuser, Cham, pp. 477–486 (2018)

  30. Trostorff, S., Waurick, M.: On differential-algebraic equations in infinite dimensions. J. Differ. Equ. 266(1), 526–561 (2019)

    Article  MathSciNet  Google Scholar 

  31. Vladimirov, V.S.: Equations of Mathematical Physics, Pure and Applied Mathematics, vol. 3. Marcel Dekker Inc., New York (1971)

    Google Scholar 

Download references

Acknowledgements

The first author is supported by the Russian Foundation for Basic Research under research project No. 19-01-00732 A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to I. V. Kurbatova.

Additional information

Communicated by Ti-Jun Xiao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kurbatova, I.V., Pechkurov, A.V. Representations of Green’s function of the bounded solutions problem for a differential-algebraic equation. Banach J. Math. Anal. 14, 707–736 (2020). https://doi.org/10.1007/s43037-019-00036-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s43037-019-00036-y

Keywords

Mathematics Subject Classification

Navigation