Skip to main content
Log in

A Bishop-Phelps-Bollobás Theorem for Asplund Operators

  • Published:
Acta Mathematica Sinica, English Series Aims and scope Submit manuscript

Abstract

By characterizing Asplund operators through Fréchet differentiability property of convex functions, we show the following Bishop-Phelps-Bollobés theorem: Suppose that X is a Banach space, T: XC(K) is an Asplund operator with ∥T∥ = 1, and that x0SX, 0 < ε satisfy \(\left\| {T\left({{x_0}} \right)} \right\| > 1 - {{{\varepsilon^2}} \over 2}\). Then there exist xεSX and an Asplund operator S: X → C(K) of norm one so that

$$\left\| {S\left({{x_\varepsilon}} \right)} \right\| = 1,\,\,\,\,\,\,\left\| {{x_0} - {x_\varepsilon}} \right\| < \varepsilon \,\,\,\,\,{\rm{and}}\,\,\,\,\,\,\,\left\| {T - S} \right\| < \varepsilon .$$

Making use of this theorem, we further show a dual version of Bishop-Phelps-Bollobas property for a strong Radon-Nikodym operator T: ℓ1Y of norm one: Suppose that y0* ∈ Sy*, ε ≥ 0 satisfy \(\left\| {{T^*}\left({y_0^*} \right)} \right\| > 1 - {{{\varepsilon^2}} \over 2}\). Then there exist y*µSy*, xε (±en), yεSy, and a strong Radon-Nikodym operator S: ℓ1→ Y of norm one so that

$$\begin{array}{*{20}{c}} {(i)}&{\left\| {S({x_\varepsilon })} \right\| = 1;}&{(ii)S({x_\varepsilon }) = {y_\varepsilon };}&{(iii)\left\| {T - S} \right\| < \varepsilon ;} \end{array}$$
$$\begin{array}{*{20}{c}} {(iv)\left\| {{S^*}(y_\varepsilon ^*)} \right\| = \left\langle {y_\varepsilon ^*,{y_\varepsilon }} \right\rangle = 1;}&{(v)\left\| {y_0^* - y_\varepsilon ^*} \right\| < \varepsilon }&{and}&{(vi)\left\| {{T^*} - {S^*}} \right\| < \varepsilon ,} \end{array}$$

where (en) denotes the standard unit vector basis of 1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Acosta, M. D., Aron, R. M., García, D., et al.: The Bishop-Phelps-Bollobás theorem for operators. J. Funct. Anal., 254(11), 2780–2799 (2008)

    Article  MathSciNet  Google Scholar 

  2. Aron, R. M., Cascales, B., Kozhushkina, O.: The Bishop-Phelps-Bolloás theorem and Asplund operators. Proc. Amer. Math. Soc., 139, 3553–3560 (2011)

    Article  MathSciNet  Google Scholar 

  3. Asplund, E.: Fréchet differentiability of convex functions. Acta Math., 121, 31–47 (1968)

    Article  MathSciNet  Google Scholar 

  4. Bishop, E., Phelps, R. R.: A proof that every Banach space is subreflexive. Bull. Amer. Math. Soc., 67, 97–98 (1961)

    Article  MathSciNet  Google Scholar 

  5. Bollobás, B.: An extension to the theorem of Bishop and Phelps. Bull. London Math. Soc., 2, 181–182 (1970)

    Article  MathSciNet  Google Scholar 

  6. Bourgain, J.: On dentability and the Bishop-Phelps property. Israel J. Math., 28(4), 265–271 (1977)

    Article  MathSciNet  Google Scholar 

  7. Bourgin, R. D.: Geometric Aspects of Convex Sets with the Radon-Nikodym Property, Lect. Notes in Math., Vol. 993, Springer-Verlag, New York, 1983

    Book  Google Scholar 

  8. Brøndsted, A., Rockafellar, R. T.: On the subdifferentiability of convex functions. Proc. Amer. Math. Soc., 16, 605–611 (1965)

    Article  MathSciNet  Google Scholar 

  9. Cascales, B., Guirao, A. J., Kadets, V.: A Bishop-Phelps-Bollobáas type theorem for uniform algebras. Adv. Math., 240, 370–382 (2013)

    Article  MathSciNet  Google Scholar 

  10. Cascales, B., Guirao, A. J., Kadets, V., et al.: Γ-flatness and Bishop-Phelps-Bollobás type theorems for operators. J. Funct. Anal., 274(3), 863–888 (2018)

    Article  MathSciNet  Google Scholar 

  11. Diestel, J., Uhl Jr. J. J.: Vector Measures, Math. Surveys 15, Amer. Math. Soc. 1977

  12. Edgar, G. A., Sucheston, L.: Stopping times and directed processes, In: Encyclopedia of Mathematics and its Applications, Vol. 47, Cambridge University Press, Cambridge, 1992

    Google Scholar 

  13. Fabian, M.: Gateaux differentiability of Convex Functions and Topology, Weak Asplund Spaces. Canad. Math. Soc. Ser. Monographs & Adv. Texts, John Wiley & Sons, New York, 1997

    MATH  Google Scholar 

  14. Fitzpatrick, S. P.: Separably related sets and the Radon-Nikodym property. Illinois J. Math., 29, 229–247 (1985)

    Article  MathSciNet  Google Scholar 

  15. Kenderov, P. S.: Monotone operators in Asplund spaces. C. R. Acad. Bulgare Sci., 30, 963–964 (1977)

    MathSciNet  MATH  Google Scholar 

  16. Labuschagne, C. C. A.: A Dodds-Fremlin property for Asplund and Radon-Nikodßym operators. Positivity, 10, 391–407 (2006)

    Article  MathSciNet  Google Scholar 

  17. Linde, W.: An operator ideal in connection with the Radon-Nikodßym property of Banach spaces. Math. Nacht., 71, 65–73 (1976)

    Article  Google Scholar 

  18. Lindenstrauss, J.: On operators which attain their norm. Israel J. Math., 1, 139–148 (1963)

    Article  MathSciNet  Google Scholar 

  19. Lindenstrauss, J., Tzafriri, L.: Classical Banach spaces I, Sequence Spaces, Springer-Verlag, Berlin, 1977

    MATH  Google Scholar 

  20. Lomonosov, V.: On the Bishop-Phelps theorem in complex spaces. Quaest. Math., 23(2), 187–191 (2000)

    Article  MathSciNet  Google Scholar 

  21. Namioka, I., Phelps, R. R.: Banach spaces which are Asplund spaces. Duke Math. J., 42(4), 735–750 (1975)

    Article  MathSciNet  Google Scholar 

  22. Phelps, R. R.: Convex Functions, Monotone Operators and Differentiability, Lect. Notes in Math., Vol. 1364, Springer-Verlag, 1989

  23. Phelps, R. R.: The Bishop-Phelps theorem, In: Ten Mathematical Essays on Approximation in Analysis and Topology, 235–244, Elsevier B. V., Amsterdam, 2005

    Chapter  Google Scholar 

  24. Rainwater, J.: Yet more on the differentiability of convex functions. Proc. Amer. Math. Soc., 103(3), 773–778 (1988)

    Article  MathSciNet  Google Scholar 

  25. Reinov, O. J.: Operators of type RN in Banach spaces (Russian). Soviet Math. Dokl., 16, 119–123 (1975)

    MATH  Google Scholar 

  26. Reinov, O. J.: Geometric characterization of RN-operators. Matematicheskie Zametki, 22, 189–202 (1977)

    MathSciNet  MATH  Google Scholar 

  27. Stegall, C.: The Radon-Nikodym property in conjugate Banach spaces. Trans. Amer. Math. Soc., 206, 213–223 (1975)

    Article  MathSciNet  Google Scholar 

  28. Stegall, C.: The Radon-Nikodßym property in conjugate Banach spaces II. Trans. Amer. Math. Soc., 264, 507–519 (1981)

    MathSciNet  MATH  Google Scholar 

  29. Wu, C., Cheng, L.: A note on the differentiability of convex functions. Proc. Amer. Math. Soc., 121(4), 1057–1062 (1994)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

We thank the referees for their time and comments.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li Xin Cheng, Qing Jin Cheng, Kang Kang Xu, Wen Zhang or Zhe Ming Zheng.

Additional information

Support by National Natural Science Foundation of China (Grant No. 11731010)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cheng, L.X., Cheng, Q.J., Xu, K.K. et al. A Bishop-Phelps-Bollobás Theorem for Asplund Operators. Acta. Math. Sin.-English Ser. 36, 765–782 (2020). https://doi.org/10.1007/s10114-020-9410-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10114-020-9410-5

Keywords

MR(2010) Subject Classification

Navigation