Skip to main content
Log in

Comparative Evaluation of Ray Tracing and Diffusion Equation Modeling in Room Acoustics Design of Subway Stations

  • Original Paper
  • Published:
Acoustics Australia Aims and scope Submit manuscript

Abstract

Due to their disproportionate geometries and uneven distribution of sound, the interior sound field analysis of subway stations has always been challenging. The field necessitates reliable tools for real-case design applications, while the research and discussions on the topic are still ongoing. This study compares two major room acoustics simulation approaches, namely ray tracing and diffusion equation modeling (DEM) in order to assist future acoustical designs of subway stations. Two cases of Istanbul Metropolitan metro lines are selected, namely station BAG with a circular cross section and station USK with rectangular cross section. The reverberation time and relative sound pressure level results from field tests are compared with those obtained by the ray tracing and DEM. The results emphasized the validity as well as limitations of each method over discussed metrics with given geometric layouts and material characteristics of the subway stations.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Turkish Environmental Noise Act of 2010, Article 12, Passage 3, Table 5

  2. Sü, Z., Çalıskan, M.: Acoustical design and noise control in metro stations: case studies of the Ankara metro system. Build. Acoust. 14(3), 231–249 (2007)

    Article  Google Scholar 

  3. Kootwijk, P.A.A.: The speech intelligibility of the public address systems at 14 Dutch railway stations. J. Sound Vib. 193(1), 433–434 (1996)

    Article  Google Scholar 

  4. Nowicka, E.: Assessing the acoustical climate of underground stations. Int. J. Occup. Saf. Ergon. (JOSE) 13(4), 427–431 (2007)

    Article  MathSciNet  Google Scholar 

  5. Kim, Y.H., Soeta, Y.: Architectural treatments for improving sound fields for public address announcements in underground station platforms. Appl. Acoust. 74, 1205–1220 (2013)

    Article  Google Scholar 

  6. Shimokura, R., Soeta, Y.: Sound field characteristics of underground railway stations—effect of interior materials and noise source positions. Appl. Acoust. 73, 1150–1158 (2012)

    Article  Google Scholar 

  7. Kang, J.: Acoustics of long underground spaces. Tunn. Undergr. Space Technol. 12(1), 15–21 (1997)

    Article  MathSciNet  Google Scholar 

  8. Kang, J.: Scale modelling for improving the speech intelligibility from multiple loudspeakers in long enclosures by architectural acoustic treatments. Acta Acust. 84, 689–700 (1998)

    Google Scholar 

  9. Beranek, L.L.: Acoustics. McGraw-Hill, New York (1954)

    Google Scholar 

  10. Davies, H.G.: Noise propagation in corridors. J. Acoust. Soc. Am. 53(1973), 1253–1262 (1973)

    Article  Google Scholar 

  11. Doak, P.E.: Fundamentals of aerodynamic sound theory and flow duct acoustics. J. Sound Vib. 28, 527–561 (1973)

    Article  MATH  Google Scholar 

  12. Li, K.M., Lu, K.K.: Propagation of sound in long enclosures. J. Acoust. Soc. Am. 116(5), 2759–2770 (2004). https://doi.org/10.1121/1.1798351

    Article  Google Scholar 

  13. Kang, J.: A method for predicting acoustic indices in long enclosures. Appl. Acoust. 51(2), 169–180 (1997)

    Article  MathSciNet  Google Scholar 

  14. Yang, L.N., Shield, B.M.: Development of a ray-tracing computer model for the prediction of the sound field in long enclosures. J. Sound Vib. 229(1), 133–146 (2000)

    Article  Google Scholar 

  15. Picaut, J., Simon, L., Polack, J.D.: Sound field in long rooms with diffusely reflecting boundaries. Appl. Acoust. 56, 217–240 (1999)

    Article  Google Scholar 

  16. Valeau, V., Picaut, J., Hodgson, M.: On the use of a diffusion equation for room acoustic prediction. J. Acoust. Soc. Am. 119(3), 1504–1513 (2006)

    Article  Google Scholar 

  17. Pollès, T.L., Picaut, J., Bérengier, M.: Sound field modeling in a street canyon with partially diffusely reflecting boundaries by the transport theory. J. Acoust. Soc. Am. 116(5), 2969–2983 (2004)

    Article  Google Scholar 

  18. Jing, Y., Larsen, E.W., Xiang, N.: One-dimensional transport equation models for sound energy propagation in long spaces: theory. J. Acoust. Soc. Am. 127(4), 2312–2322 (2010). https://doi.org/10.1121/1.3298936

    Article  Google Scholar 

  19. Jing, Y., Xiang, N.: One-dimensional transport equation models for sound energy propagation in long spaces: simulations and experiments. J. Acoust. Soc. Am. 127(4), 2323–2331 (2010). https://doi.org/10.1121/1.3303981

    Article  Google Scholar 

  20. Redmore, T.L.: A theoretical analysis and experimental study of the behavior of sound in corridors. Appl. Acoust. 15, 161–170 (1982)

    Article  Google Scholar 

  21. Sü Gül, Z., Xiang, N., Çalışkan, M.: Investigations on sound energy decays and flows in a monumental mosque. J. Acoust. Soc. Am. 140(1), 344–355 (2016)

    Article  Google Scholar 

  22. Sü Gül, Z., Xiang, N., Çalışkan, M.: Diffusion equation based finite element modeling of a monumental worship space. J. Comput. Acoust. 25(4), 1–16 (2017)

    MathSciNet  Google Scholar 

  23. Sü Gül, Z., Odabaş, E., Xiang, N., Çalışkan, M.: Diffusion equation modeling for sound energy flow analysis in multi domain structures. J. Acoust. Soc. Am. 145(4), 2703–2717 (2019). https://doi.org/10.1121/1.5095877

    Article  Google Scholar 

  24. Ollendorff, F.: Statistical room-acoustics as a problem of diffusion. Acustica 21, 236–245 (1969)

    Google Scholar 

  25. Kuttruff, H.: Room Acoustics, 4th edn. Spon Press, London (2000)

    Google Scholar 

  26. Billon, A., Picaut, J., Sakout, A.: Prediction of the reverberation time in high absorbent room using a modified-diffusion model. Appl. Acoust. 69, 68–74 (2008)

    Article  Google Scholar 

  27. Jing, Y., Xiang, N.: On boundary conditions for the diffusion equation in room acoustic prediction: theory, simulations, and experiments. J. Acoust. Soc. Am. 123(1), 145–153 (2008)

    Article  Google Scholar 

  28. Visentin, C., Prodi, N., Valeau, V., Picaut, J.: A numerical investigation of the Fick’s law of diffusion in room acoustics. J. Acoust. Soc. Am. 132(5), 3180–3189 (2013). https://doi.org/10.1121/1.4756924

    Article  Google Scholar 

  29. Navarro, J.M., Jacobsen, F., Escolano, J., López, J.J.: A theoretical approach to room acoustic simulations based on a radiative transfer model. Acta Acust. United Acust. 96, 1078–1089 (2010). https://doi.org/10.3813/AAA.918369

    Article  Google Scholar 

  30. Navarro, J.M., Escolano, J.: Simulation of building indoor acoustics using an acoustic diffusion equation model. J. Build. Perform. Simul. 8(1), 3–14 (2013). https://doi.org/10.1080/19401493.2013.850534

    Article  Google Scholar 

  31. Brinkmann, F., Aspöck, L., Ackermann, D., Lepa, S., Vorländer, M., Weinzierl, S.: A round robin on room acoustical simulation and auralization. J. Acoust. Soc. Am. 145(4), 2746–2760 (2019)

    Article  Google Scholar 

  32. Morse, P., Feshbach, H.: Methods of Theoretical Physics. McGraw-Hill, New York (1955)

    MATH  Google Scholar 

  33. Xiang, N., Escolano, J., Navarro, J.M., Jing, Y.: Investigation on the effect of aperture sizes and receiver positions in coupled rooms. J. Acoust. Soc. Am. 133(6), 3975–3985 (2013)

    Article  Google Scholar 

  34. Sü Gül, Z., Çalışkan, M., Tavukcuoglu, A., Xiang, N.: Assessment of acoustical indicators in multi-domed historic structures by non-exponential energy decay analysis. Acoust. Aust. 46, 181–192 (2018)

    Article  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge the subcontractor for engineering services, Prota Engineering Inc., contractor, Doğuş Construction Inc. of Istanbul, and operator, Metro Istanbul, for their collaboration in design process and support in providing permissions for the field measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zühre Sü Gül.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sü Gül, Z., Odabaş, E. & Çalışkan, M. Comparative Evaluation of Ray Tracing and Diffusion Equation Modeling in Room Acoustics Design of Subway Stations. Acoust Aust 48, 93–105 (2020). https://doi.org/10.1007/s40857-020-00179-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40857-020-00179-1

Keywords

Navigation