Skip to main content
Log in

A Compressible Fluid Flow Model Coupling Channel and Porous Media Flows and Its Application to Fuel Cell Materials

  • Published:
Transport in Porous Media Aims and scope Submit manuscript

Abstract

A multi-dimensional, compressible fluid flow solver, valid in both channel and porous media, is derived by volume-averaging the Navier–Stokes equations. By selecting an appropriate average density/velocity pair, a continuous, stable solution is obtained for both pressure and velocity. The proposed model is validated by studying the pressure drop of two commonly used experimental setups to measure in-plane and through-plane permeability of fuel cell porous media. Numerical results show that the developed model is able to reproduce the experimentally measured pressure drop at varying flow rates. Further, it highlights that previously used methods of extracting permeability, which rely on the use of simplified one-dimensional models, are not appropriate when high flow rates are used to study the porous media. At high flow rates, channel–porous media interactions cannot be neglected and can result in incorrect permeability estimations. For example, at flow rates of 1 SLPM a discrepancy of 12% in pressure drop was observed when using previous permeability values instead of the values obtained in the article using the proposed 3D model. Given that at high flow rate one-dimensional models might not be appropriate, previous estimations of Forchheimer permeability might not be accurate. To illustrate the suitability of the numerical model to fuel cell applications, fluid flow bypass in serpentine and interdigitated fuel cell flow channels is also investigated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Amestoy, P., Duff, I., L’Excellent, J.: MUMPS multifrontal massively parallel solver version 2.0 (1998)

  • Auriault, J.: On the domain of validity of Brinkman’s equation. Transp. Porous Media 79(2), 215–223 (2009)

    Google Scholar 

  • Badea, L., Discacciati, M., Quarteroni, A.: Numerical analysis of the Navier–Stokes/Darcy coupling. Numer. Math. 115(2), 195–227 (2010)

    Google Scholar 

  • Bangerth, W., Hartmann, R., Kanschat, G.: deal.II—a general-purpose object-oriented finite element library. ACM Trans. Math. Softw. (TOMS) 33(4), 24 (2007)

    Google Scholar 

  • Beavers, G., Joseph, D.: Boundary conditions at a naturally permeable wall. J. Fluid Mech. 30(1), 197–207 (1967)

    Google Scholar 

  • Bernardi, C., Rebollo, T., Hecht, F., Mghazli, Z.: Mortar finite element discretization of a model coupling Darcy and Stokes equations. ESAIM: Math. Modell. Numer. Anal. 42(3), 375–410 (2008)

    Google Scholar 

  • Burman, E., Hansbo, P.: A unified stabilized method for Stokes’ and Darcy’s equations. J. Comput. Appl. Math. 198(1), 35–51 (2007)

    Google Scholar 

  • Carrigy, N., Pant, L., Mitra, S., Secanell, M.: Knudsen diffusivity and permeability of PEMFC microporous coated gas diffusion layers for different polytetrafluoroethylene loadings. J. Electrochem. Soc. 160(2), F81–F89 (2013)

    Google Scholar 

  • Chidyagwai, P., Rivière, B.: On the solution of the coupled Navier–Stokes and Darcy equations. Comput. Methods Appl. Mech. Eng. 198(47–48), 3806–3820 (2009)

    Google Scholar 

  • Cremonesi, M., Meduri, S., Perego, U.: Lagrangian–Eulerian enforcement of non-homogeneous boundary conditions in the Particle Finite Element Method. Comput. Part. Mech. 7(1), 41–56 (2020)

    Google Scholar 

  • Darcy, H.: Recherches expérimentales relatives au mouvement de l’eau dans les tuyaux, vol. 1. Impr, Impériale (1857)

  • Davis, T.: Algorithm 832: Umfpack v4. 3—an unsymmetric-pattern multifrontal method. ACM Trans. Math. Softw. (TOMS) 30(2), 196–199 (2004)

    Google Scholar 

  • Discacciati, M., Quarteroni, A.: Navier–Stokes/Darcy coupling: modeling, analysis, and numerical approximation. Rev. Mat. Complut. 22(2), 315–426 (2009)

    Google Scholar 

  • Dobberschütz, S.: Effective behavior of a free fluid in contact with a flow in a curved porous medium. SIAM J. Appl. Math. 75(3), 953–977 (2015)

    Google Scholar 

  • Donea, J., Huerta, A.: Finite Element Methods for Flow Problems, 1st edn. Wiley, New York (2003)

    Google Scholar 

  • El-Jarroudi, M., Er-Riani, M.: Homogenization of a two-phase incompressible fluid in crossflow filtration through a porous medium. Math. Methods Appl. Sci. 41(1), 281–302 (2018)

    Google Scholar 

  • Erturk, E., Corke, T., Gökçöl, C.: Numerical solutions of 2-D steady incompressible driven cavity flow at high Reynolds numbers. Int. J. Numer. Methods Fluids 48(7), 747–774 (2005)

    Google Scholar 

  • Feser, J., Prasad, A., Advani, S.: Experimental characterization of in-plane permeability of gas diffusion layers. J. Power Sources 162(2), 1226–1231 (2006)

    Google Scholar 

  • Forchheimer, P.: Wasserbewegung durch boden. Z. Ver. dtsch. Ing. 45, 1782–1788 (1901)

    Google Scholar 

  • Gebart, B.: Permeability of unidirectional reinforcements for RTM. J. Compos. Mater. 26(8), 1100–1133 (1992)

    Google Scholar 

  • Ghia, U., Ghia, K., Shin, C.: High-Re solutions for incompressible flow using the Navier–Stokes equations and a multigrid method. J. Comput. Phys. 48(3), 387–411 (1982)

    Google Scholar 

  • Gostick, J., Fowler, M., Pritzker, M., Ioannidis, M., Behra, L.: In-plane and through-plane gas permeability of carbon fiber electrode backing layers. J. Power Sources 162(1), 228–238 (2006)

    Google Scholar 

  • Gray, W., Lee, P.: On the theorems for local volume averaging of multiphase systems. Int. J. Multiph. Flow 3(4), 333–340 (1977)

    Google Scholar 

  • Gresho, P., Sani, R.: Incompressible Flow and the Finite Element Method. Volume 1: Advection–Diffusion and Isothermal Laminar Flow. Wiley, New York (1998)

    Google Scholar 

  • Gurau, V., Bluemle, M., Castro, E.D., Tsou Jr., Y., Zawodzinski Jr., T., Mann Jr., J.A.: Characterization of transport properties in gas diffusion layers for proton exchange membrane fuel cells: 2. absolute permeability. J. Power Sources 165(2), 793–802 (2007)

    Google Scholar 

  • Hashemi, F., Rowshanzamir, S., Rezakazemi, M.: CFD simulation of PEM fuel cell performance: effect of straight and serpentine flow fields. Math. Comput. Modell. 55(3–4), 1540–1557 (2012)

    Google Scholar 

  • Hendrick, A., Erdmann, R., Goodman, M.: Practical considerations for selection of representative elementary volumes for fluid permeability in fibrous porous media. Transp. Porous Media 95(2), 389–405 (2012)

    Google Scholar 

  • Howes, F., Whitaker, S.: The spatial averaging theorem revisited. Chem. Eng. Sci. 40(8), 1387–1392 (1985)

    Google Scholar 

  • Hsu, C., Cheng, P.: Thermal dispersion in a porous medium. Int. J. Heat Mass Transf. 33(8), 1587–1597 (1990)

    Google Scholar 

  • Hussaini, I., Wang, C.: Measurement of relative permeability of fuel cell diffusion media. J. Power Sources 195(12), 3830–3840 (2010)

    Google Scholar 

  • Ismail, M., Damjanovic, T., Hughes, K., Ingham, D., Ma, L., Pourkashanian, M., Rosli, M.: Through-plane permeability for untreated and PTFE-treated gas diffusion layers in proton exchange membrane fuel cells. J. Fuel Cell Sci. Technol. 7(5), 051016 (2009)

    Google Scholar 

  • Ismail, M., Damjanovic, T., Ingham, D., Ma, L., Pourkashanian, M.: Effect of polytetrafluoroethylene-treatment and microporous layer-coating on the in-plane permeability of gas diffusion layers used in proton exchange membrane fuel cells. J. Power Sources 195(19), 6619–6628 (2010)

    Google Scholar 

  • Ismail, M., Borman, D., Damjanovic, T., Ingham, D., Pourkashanian, M.: On the through-plane permeability of microporous layer-coated gas diffusion layers used in proton exchange membrane fuel cells. Int. J. Hydrog. energy 36(16), 10392–10402 (2011)

    Google Scholar 

  • Jian, Q., Ma, G., Qiu, X.: Influences of gas relative humidity on the temperature of membrane in PEMFC with interdigitated flow field. Renew. Energy 62, 129–136 (2014)

    Google Scholar 

  • Levy, T., Sanchez-Palencia, E.: On boundary conditions for fluid flow in porous media. Int. J. Eng. Sci. 13(11), 923–940 (1975)

    Google Scholar 

  • Li, S., Sundén, B.: Effects of gas diffusion layer deformation on the transport phenomena and performance of PEM fuel cells with interdigitated flow fields. Int. J. Hydrog. Energy 43(33), 16279–16292 (2018)

    Google Scholar 

  • Liu, S., Masliyah, J.: Single fluid flow in porous media. Chem. Eng. Commun. 148(1), 653–732 (1996)

    Google Scholar 

  • Mahmoudi, A., Ramiar, A., Esmaili, Q.: Effect of inhomogeneous compression of gas diffusion layer on the performance of PEMFC with interdigitated flow field. Energy Convers. Manag. 110, 78–89 (2016)

    Google Scholar 

  • Mangal, P., Dumontier, M., Carrigy, N., Secanell, M.: Measurements of permeability and effective in-plane gas diffusivity of gas diffusion media under compression. ECS Trans. 64(3), 487–499 (2014)

    Google Scholar 

  • Mangal, P., Pant, L., Carrigy, N., Dumontier, M., Zingan, V., Mitra, S., Secanell, M.: Experimental study of mass transport in PEMFCs: through plane permeability and molecular diffusivity in GDLs. Electrochim. Acta 167, 160–171 (2015)

    Google Scholar 

  • Nguyen, P., Berning, T., Djilali, N.: Computational model of a PEM fuel cell with serpentine gas flow channels. J. Power Sources 130(1–2), 149–157 (2004)

    Google Scholar 

  • Orogbemi, O., Ingham, D., Ismail, M., Hughes, K., Ma, L., Pourkashanian, M.: Through-plane gas permeability of gas diffusion layers and microporous layer: effects of carbon loading and sintering. J. Energy Inst. 91(2), 270–278 (2018)

    Google Scholar 

  • Pant, L., Mitra, S., Secanell, M.: Absolute permeability and Knudsen diffusivity measurements in PEMFC gas diffusion layers and micro porous layers. J. Power Sources 206, 153–160 (2012)

    Google Scholar 

  • Park, J., Li, X.: An experimental and numerical investigation on the cross flow through gas diffusion layer in a PEM fuel cell with a serpentine flow channel. J. Power Sources 163(2), 853–863 (2007)

    Google Scholar 

  • Park, J., Li, X.: An analytical analysis on the cross flow in a PEM fuel cell with serpentine flow channel. Int. J. Energy Res. 35(7), 583–593 (2011)

    Google Scholar 

  • Pharoah, J.: On the permeability of gas diffusion media used in PEM fuel cells. J. Power Sources 144(1), 77–82 (2005)

    Google Scholar 

  • Qin, Y., Liu, G., Chang, Y., Du, Q.: Modeling and design of PEM fuel cell stack based on a flow network method. Appl. Therm. Eng. 144, 411–423 (2018)

    Google Scholar 

  • Rajagopal, K.: On a hierarchy of approximate models for flows of incompressible fluids through porous solids. Math. Models Methods Appl. Sci. 17(02), 215–252 (2007)

    Google Scholar 

  • Saffman, P.: On the boundary condition at the surface of a porous medium. Stud. Appl. Math. 50(2), 93–101 (1971)

    Google Scholar 

  • Saha, L., Oshima, N.: Prediction of flow crossover in the GDL of PEFC using serpentine flow channel. J. Mech. Sci. Technol. 26(5), 1315–1320 (2012)

    Google Scholar 

  • Saha, S., Kurihara, E., Shi, W., Oshima, N.: Numerical study of pressure drop in the separator channel and gas diffusion layer of polymer electrolyte fuel cell and deformation effect of porous media. In: ASME 2008 6th International Conference on Nanochannels, Microchannels, and Minichannels, American Society of Mechanical Engineers, pp. 1317–1325 (2008)

  • Salahuddin, K., Oshima, N.: Numerical investigation of cross flow on the performance of polymer electrolyte fuel cell. J. Therm. Sci. Technol. 8(3), 586–602 (2013). https://doi.org/10.1299/jtst.8.586

    Article  Google Scholar 

  • Salahuddin, K., Nishimura, A., Oshima, N., Saha, L.: Numerical study of pressure drop mechanism and cross flow behavior in the gas channel and porous medium of a polymer electrolyte membrane fuel cell. J. Therm. Sci. Technol. 8(1), 209–224 (2013)

    Google Scholar 

  • Santamaria, A., Cooper, N., Becton, M., Park, J.: Effect of channel length on interdigitated flow-field PEMFC performance: a computational and experimental study. Int. J. Hydrog. Energy 38(36), 16253–16263 (2013)

    Google Scholar 

  • Secanell, M., Putz, A., Wardlaw, P., Zingan, V., Bhaiya, M., Moore, M., Zhou, J., Balen, C., Domican, K.: OpenFCST: an open-source mathematical modelling software for polymer electrolyte fuel cells. ECS Trans. 64(3), 655–680 (2014)

    Google Scholar 

  • Srinivasan, S., Rajagopal, K.: A thermodynamic basis for the derivation of the Darcy, Forchheimer and Brinkman models for flows through porous media and their generalizations. Int. J. Non-Linear Mech. 58, 162–166 (2014)

    Google Scholar 

  • Sun, L., Oosthuizen, P., McAuley, K.: A numerical study of channel-to-channel flow cross-over through the gas diffusion layer in a PEM-fuel-cell flow system using a serpentine channel with a trapezoidal cross-sectional shape. Int. J. Therm. Sci. 45(10), 1021–1026 (2006)

    Google Scholar 

  • Tamayol, A., McGregor, F., Bahrami, M.: Single phase through-plane permeability of carbon paper gas diffusion layers. J. Power Sources 204, 94–99 (2012)

    Google Scholar 

  • Urquiza, J., N’dri, D., Garon, A., Delfour, M.: Coupling stokes and darcy equations. Appl. Numer. Math. 58(5), 525–538 (2008)

    Google Scholar 

  • Vafai, K., Tien, C.: Boundary and inertia effects on flow and heat transfer in porous media. Int. J. Heat Mass Transf. 24(2), 195–203 (1981)

    Google Scholar 

  • Whitaker, S.: Advances in theory of fluid motion in porous media. Ind. Eng. Chem. 61(12), 14–28 (1969)

    Google Scholar 

  • Whitaker, S.: The forchheimer equation: a theoretical development. Transp. Porous Media 25(1), 27–61 (1996)

    Google Scholar 

  • Whitaker, S.: The Method of Volume Averaging, vol. 13. Springer, Berlin (1999)

    Google Scholar 

  • Xu, H.: Experimental measurement of mass transport parameters of gas diffusion layer and catalyst layer in PEM fuel cell. Master’s thesis, University of Alberta (2019)

  • Yu, L., Ren, G., Qin, M., Jiang, X.: Transport mechanisms and performance simulations of a PEM fuel cell with interdigitated flow field. Renew. Energy 34(3), 530–543 (2009)

    Google Scholar 

  • Zhang, S., Reimer, U., Beale, S., Lehnert, W., Stolten, D.: Modeling polymer electrolyte fuel cells: a high precision analysis. Appl. Energy 233, 1094–1103 (2019a)

    Google Scholar 

  • Zhang, X., Zhang, X., Taira, H., Liu, H.: Error of Darcy’s law for serpentine flow fields: dimensional analysis. J. Power Sources 412, 391–397 (2019b)

    Google Scholar 

Download references

Acknowledgements

The authors would also like to thank the Natural Sciences and Engineering Research Council of Canada (NSERC), the Automotive Fuel Cell Cooperation (AFCC) Corp., and International Cooling Towers (ICT) for their financial support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marc Secanell.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Lid-Driven Cavity Flow Test Case

Appendix: Lid-Driven Cavity Flow Test Case

A standard benchmark problem for testing Navier–Stokes equations is the lid-driven cavity flow problem (Donea and Huerta 2003; Cremonesi et al. 2020), which consists in the flow of an isothermal fluid in a square cavity, as shown in Fig. 19. The fluid contained inside the cavity is set into motion by the top wall which is sliding at constant velocity from left to right, while the other sides are fixed.

Fig. 19
figure 19

Lid-driven cavity flow configuration and boundary conditions

The steady-state compressible numerical solution is computed at Re = 1000 on a \(128 \times 128\) grid by using \(Q_1\) and \(Q_2\) approximations for density and velocity, respectively. The tolerance of the Newton method is set to \(10^{-10}\). The fluid flow patterns generated in this computation are shown in Fig. 20a, b. The streamlines depicted in Fig. 20a show the formation of three vortexes, which have been already observed in previous numerical studies Donea and Huerta (2003), Ghia et al. (1982), Erturk et al. (2005), Cremonesi et al. (2020).

The numerical results are compared to those previously obtained by Ghia et al. (1982). Figure 21 shows the variation of the horizontal and vertical velocity components along the vertical and horizontal centerlines (i.e., \(y/L = 0.5\) and \(x/L = 0.5\)), respectively. The computational results obtained by the present model are in very good agreement with the available numerical data.

Fig. 20
figure 20

a Velocity field and streamlines and b pressure field for the lid-driven cavity flow at Re = 1000

Fig. 21
figure 21

a Velocity \(x-\)component profile along the vertical centerline and b velocity \(y-\)component profile along the horizontal centerline for the lid-driven cavity flow at Re = 1000

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jarauta, A., Zingan, V., Minev, P. et al. A Compressible Fluid Flow Model Coupling Channel and Porous Media Flows and Its Application to Fuel Cell Materials. Transp Porous Med 134, 351–386 (2020). https://doi.org/10.1007/s11242-020-01449-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11242-020-01449-2

Keywords

Navigation