Skip to main content
Log in

Contingent relations for Klein–Gordon equations

  • Original Paper
  • Published:
Indian Journal of Physics Aims and scope Submit manuscript

Abstract

This paper considers a general set of Einstein–Maxwell fields in 2 + 1-dimensional space. Two broad categories of solutions are discussed, namely solutions of vanishing covariant derivatives (uniform electromagnetic fields) and stationary cyclic symmetric spaces. Subsequently, several major subclasses of solutions arise that may be classified according to the conformal algebra they possess. A key feature of these algebras is the presence of the \({\text {SO}}(2)\times R\) Killing group. It is shown that this group and other elements of the conformal algebra of each solution satisfy a special contingency relation with the potential function of the Klein–Gordon equation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A Staruszkiewicz Acta Phys. Polon. 24 734 (1963)

    Google Scholar 

  2. E Witten Nucl. Phys. B 323 113 (1989)

    Article  ADS  Google Scholar 

  3. M Bañados, C Teitelboim and J Zanelli Phys. Rev. Lett. 69 1849 (1992)

    Article  ADS  MathSciNet  Google Scholar 

  4. E Witten Nucl. Phys. B 311 46 (1988)

    Article  ADS  Google Scholar 

  5. D Bohm Phys. Rev. 55 166 (1952a)

    Article  ADS  Google Scholar 

  6. N Dimakis, A Giacomini, S Jamal, G Leon and A Paliathanasis Phys. Rev. D 95 064031 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  7. S Jamal Math. Phys. Anal. Geom. 21(25) 1-9 (2018)

    Google Scholar 

  8. K F Dialektopoulos and S Capozziello Int. J. Geom. Meth. Mod. Phys. 15 1840007 (2018)

    Article  Google Scholar 

  9. M J Khan, G Shabbir and M Ramzan Mod. Phys. Lett. A 34(24) 1950189 (2019)

    Article  ADS  Google Scholar 

  10. G Shabbir, F Hussain, F M Mahomed and M Ramzan Mod. Phys. Lett. A 33(37) 1850222 (2018)

    Article  ADS  Google Scholar 

  11. F Hussain, G. Shabbir, M. Ramzan and S. Malik, Int. J. Geom. Meth. Mod. Phys. 16(10) 1950151 (2019)

    Article  Google Scholar 

  12. A M Manjonjo, S D Maharaj and S Moopanar J. Phys. Commun. 3 025003 (2019)

    Article  Google Scholar 

  13. K Newton Singh, P. Bhar, F. Rahaman and N. Pant J. Phys Commun. 2 015002 (2018)

    Article  Google Scholar 

  14. P Peldan Nucl. Phys. B 395 239 (1993)

    Article  ADS  MathSciNet  Google Scholar 

  15. G Clement Class. Quant. Grav. 10 L49 (1993)

    Article  ADS  Google Scholar 

  16. A A García Annal. Phys. 324 2004–2050 (2009)

    Article  ADS  Google Scholar 

  17. K Yano, The Theory of Lie Derivatives and Its Applications (Amsterdam: North Holland Publishing Co.) (1956)

    Google Scholar 

  18. G H Katzin, J Levine and W R Davis J. Math. Phys. 10 617 (1969)

    Article  ADS  Google Scholar 

  19. A Paliathanasis and M Tsamparlis Int. J. Geom. Methods Mod. Phys. 11 14500376 (2014)

    Article  Google Scholar 

  20. S Jamal Gen. Rel. Grav. 49(88) 1 (2017)

    Google Scholar 

  21. S Jamal and A Paliathanasis J. Geom. Phys. 117 50 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  22. M A Melvin Class. Quant. Grav. 3 117 (1986)

    Article  ADS  Google Scholar 

  23. J D Barrow, A B Burd and D Lancaster, Class. Quant. Grav. 3 551 (1986)

    Article  ADS  Google Scholar 

  24. J R Gott, J Simon and M Alpert Gen. Rel. Grav. 18 1019 (1986)

    Article  ADS  Google Scholar 

  25. J Matyjasek and O B Zaslavskii Class. Quant. Grav. 21 4283 (2004)

    Article  ADS  Google Scholar 

  26. B Bertotti Phys. Rev. 116 1331 (1959)

    Article  ADS  MathSciNet  Google Scholar 

  27. I Robinson Bull. Acad. Pol. Sci. 7 351 (1959)

    Google Scholar 

  28. A Giacomini, S. Jamal, G Leon, A Paliathanasis and J Saavedra Phys. Rev. D 95 124060 (2017)

    Article  ADS  MathSciNet  Google Scholar 

  29. S Basilakos and J D Barrow Phys. Rev. D 91 103517 (2015)

    Article  ADS  Google Scholar 

  30. H Stephani, Differential Equations: Their Solutions Using Symmetry (New York: Cambridge University Press) (1989)

    MATH  Google Scholar 

  31. K Yagdjian and A Galstian Commun. Math. Phys. 285 293 (2009)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

SJ acknowledges the financial support of the National Research Foundation of South Africa (118047).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S Jamal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mathebula, A., Jamal, S. Contingent relations for Klein–Gordon equations. Indian J Phys 95, 1437–1444 (2021). https://doi.org/10.1007/s12648-020-01810-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12648-020-01810-7

Keywords

Navigation