Skip to main content

Advertisement

Log in

Assessment of soil and maize contamination by TE near a coal gangue–fired thermal power plant

  • Published:
Environmental Monitoring and Assessment Aims and scope Submit manuscript

Abstract

Coal preparation by-products, such as coal gangue, are inferior fuels enriched with trace elements (TEs). Owing to the issues surrounding the disposal of coal preparation by-products and energy shortages, Chinese researchers have strongly advocated harvesting energy from by-products. However, the secondary environmental pollution caused by such by-products has been overlooked. In this study, we aimed to assess the contamination of soil and maize (Zea mays L.) near a coal gangue–fired power plant (CGPP) in Liupanshui City, Guizhou Province, China, by TEs. The contents of 11 TEs (Be, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sb, V, and Zn) in soil samples and different maize tissues were measured, and their chemical speciation in soil was also determined. The results showed that the soil in the study area was polluted by the above elements to varying degrees at a very high potential ecological risk. The Cr and Pb levels in niblets of partial samples exceeded the Chinese food safety standards. The TE contents of maize tissues largely depend on the bioavailable fraction of the same elements in the soils, rather than their total contents. Pearson’s correlation and hierarchical cluster analyses resulted in three clusters:(1) Pb–Zn–Cd; (2) Co–Cu–Mn–Sb–V–Be; and (3) Cr–Ni. Coal preparation by-products should not be directly combusted without pre-treatment. These results will aid readers and engineers in understanding the adverse effect of CGPPs and provide regulators and policymakers with relevant data to scientifically guide the utilisation of coal preparation by-products.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adamiec, E., Dajda, J., Gruszecka-Kosowska, A., Helios-Rybicka, E., Kisiel-Dorohinicki, M., Klimek, R., et al. (2019). Using medium-cost sensors to estimate air quality in remote locations. Case study of Niedzica, southern Poland. Atmosphere, 10(7), 393. https://doi.org/10.3390/atmos10070393.

    Article  CAS  Google Scholar 

  • Agrawal, P., Mittal, A., Prakash, R., Kumar, M., Singh, T. B., & Tripathi, S. K. (2010). Assessment of contamination of soil due to heavy metals around coal fired thermal power plants at Singrauli region of India. Bulletin of Environmental Contamination and Toxicology, 85(2), 219–223.

    Article  CAS  Google Scholar 

  • Akers, D., & Dospoy, R. (1994). Role of coal cleaning in control of air toxics. Fuel Processing Technology, 39(1–3), 73–86. https://doi.org/10.1016/0378-3820(94)90173-2.

    Article  CAS  Google Scholar 

  • Aunela-Tapola, L., Hatanpää, E., Hoffren, H., Laitinen, T., Larjava, K., Rasila, P., & Tolvanen, M. (1998). A study of trace element behaviour in two modern coal-fired power plants: II. Trace element balances in two plants equipped with semi-dry flue gas desulphurisation facilities. Fuel Processing Technology, 55(1), 13–34. https://doi.org/10.1016/S0378-3820(97)00053-2.

    Article  CAS  Google Scholar 

  • Bhuiyan, M. A. H., Parvez, L., Islam, M. A., Dampare, S. B., & Suzuki, S. (2010). Heavy metal pollution of coal mine-affected agricultural soils in the northern part of Bangladesh. Journal of Hazardous Materials, 173(1), 384–392.

    Article  CAS  Google Scholar 

  • Bi, X., Feng, X., Yang, Y., Li, X., Shin, G. P. Y., Li, F., Qiu, G., Li, G., Liu, T., & Fu, Z. (2009). Allocation and source attribution of lead and cadmium in maize (Zea mays L.) impacted by smelting emissions. Environmental Pollution, 157(3), 834–839.

    Article  CAS  Google Scholar 

  • BP (2019). BP statistical review of world energy 2019. https://www.bp.com/content/dam/bp/country-sites/zh_cn/china/home/reports/statistical-review-of-world-energy/2019/2019srbook.pdf Accessed 25 Oct 2019. (in Chinese).

  • Carbonell, G., Imperial, R. M. D., Torrijos, M., Delgado, M., & Rodriguez, J. A. (2011). Effects of municipal solid waste compost and mineral fertilizer amendments on soil properties and heavy metals distribution in maize plants (Zea mays L.). Chemosphere, 85(10), 1614–1623.

    Article  CAS  Google Scholar 

  • Chen, T., Liu, X., Zhu, M., Zhao, K., Wu, J., Xu, J., & Huang, P. (2008). Identification of trace element sources and associated risk assessment in vegetable soils of the urban–rural transitional area of Hangzhou, China. Environmental Pollution, 151(1), 67–78.

    Article  CAS  Google Scholar 

  • China National Environmental Monitoring Center. (1990). The background values of soil elements of China. Beijing: China Environmental Science Press. (in Chinese).

  • Cicek, A., & Koparal, A. S. (2004). Accumulation of sulfur and heavy metals in soil and tree leaves sampled from the surroundings of Tunçbilek Thermal Power Plant. Chemosphere, 57(8), 1031–1036.

    Article  CAS  Google Scholar 

  • Ciesielczuk, J., Misz-Kennan, M., Hower, J. C., Fabiańska, J., & M. (2014). Mineralogy and geochemistry of coal wastes from the Starzykowiec coal-waste dump (upper Silesia, Poland). International Journal of Coal Geology, 127, 42–55. https://doi.org/10.1016/j.coal.2014.02.007.

    Article  CAS  Google Scholar 

  • Clarke, L. B. (1993). The fate of trace elements during coal combustion and gasification: an overview. Fuel, 72(6), 731–736. https://doi.org/10.1016/0016-2361(93)90072-A.

    Article  CAS  Google Scholar 

  • Dahmani-Muller, H., Oort, F. V., Gélie, B., & Balabane, M. (2000). Strategies of heavy metal uptake by three plant species growing near a metal smelter. Environmental Pollution, 109(2), 231–238.

    Article  CAS  Google Scholar 

  • Dragović, S., Ćujić, M., Slavković-Beškoski, L., Gajić, B., Bajat, B., Kilibarda, M., & Onjia, A. (2013). Trace element distribution in surface soils from a coal burning power production area: a case study from the largest power plant site in Serbia. Catena, 104, 288–296. https://doi.org/10.1016/j.catena.2012.12.004.

    Article  CAS  Google Scholar 

  • EPA (1996). Method 3052: microwave assisted acid digestion of siliceous and organically based matrices. https://www.epa.gov/sites/production/files/2015-12/documents/3052.pdf Accessed 25 Oct 2019.

  • Finkelman, R. B., & Gross, P. M. K. (1999). The types of data needed for assessing the environmental and human health impacts of coal. International Journal of Coal Geology, 40(2–3), 91–101. https://doi.org/10.1016/S0166-5162(98)00061-5.

    Article  CAS  Google Scholar 

  • Finkelman, R. B., Orem, W., Castranova, V., Tatu, C. A., Belkin, H. E., Zheng, B., Lerch, H. E., Maharaj, S. V., & Bates, A. L. (2002). Health impacts of coal and coal use: possible solutions. International Journal of Coal Geology, 50(1), 425–443. https://doi.org/10.1016/S0166-5162(02)00125-8.

    Article  CAS  Google Scholar 

  • Guo, X. Y., Zuo, Y. B., Wang, B. R., Li, J. M., & Ma, Y. B. (2010). Toxicity and accumulation of copper and nickel in maize plants cropped on calcareous and acidic field soils. Plant and Soil, 333, 365–373. https://doi.org/10.1007/s11104-010-0351-0.

    Article  CAS  Google Scholar 

  • Hakanson, L. (1980). An ecological risk index for aquatic pollution control. A sedimentological approach. Water Research, 14(8), 975–1001. https://doi.org/10.1016/0043-1354(80)90143-8.

    Article  Google Scholar 

  • Hanesch, M., Scholger, R., & Dekkers, M. J. (2001). The application of fuzzy C-means cluster analysis and non-linear mapping to a soil data set for the detection of polluted sites. Physics and Chemistry of the Earth, Part A: Solid Earth and Geodesy, 26(11–12), 885–891. https://doi.org/10.1016/S1464-1895(01)00137-5.

    Article  Google Scholar 

  • Helble, J. J. (1994). Trace element behavior during coal combustion: results of a laboratory study. Fuel Processing Technology, 39(1–3), 159–172. https://doi.org/10.1016/0378-3820(94)90178-3.

    Article  CAS  Google Scholar 

  • Helios-Rybicka, E. (1996). Impact of mining and metallurgical industries on the environment in Poland. Applied Geochemistry, 11(1–2), 3–9. https://doi.org/10.1016/0883-2927(95)00083-6.

    Article  Google Scholar 

  • Helios-Rybicka, E., & Wójcik, R. (2012). Competitive sorption/desorption of Zn, Cd, Pb, Ni, Cu, and Cr by clay-bearing mining wastes. Applied Clay Science, 65-66, 6–13. https://doi.org/10.1016/j.clay.2012.06.006.

    Article  CAS  Google Scholar 

  • Imperato, M., Adamo, P., Naimo, D., Arienzo, M., Stanzione, D., & Violante, P. (2003). Spatial distribution of heavy metals in urban soils of Naples city (Italy). Environmental Pollution, 124(2), 247–256.

    Article  CAS  Google Scholar 

  • Islam, F., Yasmeen, T., Arif, M. S., Riaz, M., Shahzad, S. M., Imran, Q., & Ali, I. (2016). Combined ability of chromium (Cr) tolerant plant growth promoting bacteria (PGPB) and salicylic acid (SA) in attenuation of chromium stress in maize plants. Plant Physiology and Biochemistry, 108, 456–467. https://doi.org/10.1016/j.plaphy.2016.08.014.

    Article  CAS  Google Scholar 

  • Junior, A. M. D., de Oliveira, P. L., Perry, C. T., Atz, V. L., Azzarini-Rostirola, L. N., & Raya-Rodriguez, M. T. (2009). Using wild plant species as indicators for the accumulation of emissions from a thermal power plant, Candiota, South Brazil. Ecological Indicators, 9(6), 1156–1162. https://doi.org/10.1016/j.ecolind.2009.01.004.

    Article  CAS  Google Scholar 

  • Kabala, C., & Singh, B. R. (2001). Fractionation and mobility of copper, lead, and zinc in soil profiles in the vicinity of a copper smelter. Journal of Environmental Quality, 30(2), 485–492.

    Article  CAS  Google Scholar 

  • Kabata-Pendias, A. (2010). Trace elements in soils and plants. New York: CRC Press.

    Book  Google Scholar 

  • Keegan, T. J., Farago, M. E., Thornton, I., Hong, B., Colvile, R. N., Pesch, B., Jakubis, P., & Nieuwenhuijsen, M. J. (2006). Dispersion of As and selected heavy metals around a coal-burning power station in central Slovakia. Science of the Total Environment, 358(1), 61–71.

    Article  CAS  Google Scholar 

  • Klein, D. H., & Russell, P. (1973). Heavy metals: fallout around a power plant. Environmental Science & Technology, 7(4), 357–358. https://doi.org/10.1021/es60076a004.

    Article  CAS  Google Scholar 

  • Kuchler, M., & Bridge, G. (2018). Down the black hole: sustaining national socio-technical imaginaries of coal in Poland. Energy Research & Social Science, 41, 136–147. https://doi.org/10.1016/j.erss.2018.04.014.

    Article  Google Scholar 

  • Laura, R., Avner, V., Dwyer, G. S., Heileen, H. K., Amrika, D., Mike, B., et al. (2009). Survey of the potential environmental and health impacts in the immediate aftermath of the coal ash spill in Kingston, Tennessee. Environmental Science & Technology, 43(16), 6326–6333. https://doi.org/10.1021/es900714p.

    Article  CAS  Google Scholar 

  • Li, H., Liu, J., Li, S., Shen, C., Jia, J., & Zhang, Y. (2000). The present progress of research on heavy metal pollution and plant enrichment in soil plant system. Chinese Journal of Henan Agricultural University, 34(1), 30–34. (in Chinese).

  • Li, J., Xie, Z., Zhu, Y., & Ravi, N. (2005). Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine. Journal of Environmental Sciences, 17(6), 881–885.

    CAS  Google Scholar 

  • Li, D., Wu, D., Xu, F., Lai, J., & Shao, L. (2018). Literature overview of Chinese research in the field of better coal utilization. Journal of Cleaner Production, 185, 959–980. https://doi.org/10.1016/j.jclepro.2018.02.216.

    Article  CAS  Google Scholar 

  • Liu, H., Probst, A., & Liao, B. (2005). Metal contamination of soils and crops affected by the Chenzhou lead/zinc mine spill (Hunan, China). Science of the Total Environment, 339(1), 153–166.

    Article  CAS  Google Scholar 

  • Lu, Z. B., & Kang, M. (2018). Risk assessment of toxic metals in marine sediments from the Arctic Ocean using a modified BCR sequential extraction procedure. Journal of Environmental Science and Health, Part A, 53(3), 278–293. https://doi.org/10.1080/10934529.2017.1397443.

    Article  CAS  Google Scholar 

  • Lu, A., Wang, J., Qin, X., Wang, K., Han, P., & Zhang, S. (2012). Multivariate and geostatistical analyses of the spatial distribution and origin of heavy metals in the agricultural soils in Shunyi, Beijing, China. Science of the Total Environment, 425(1), 66–74.

    Article  CAS  Google Scholar 

  • Mandal, A., & Sengupta, D. (2006). An assessment of soil contamination due to heavy metals around a coal-fired thermal power plant in India. Environmental Geology, 51, 409–420. https://doi.org/10.1007/s00254-006-0336-8.

    Article  CAS  Google Scholar 

  • Marwa, E. M. M., Meharg, A. A., & Rice, C. M. (2012). Risk assessment of potentially toxic elements in agricultural soils and maize tissues from selected districts in Tanzania. Science of the Total Environment, 416, 180–186. https://doi.org/10.1016/j.scitotenv.2011.11.089.

    Article  CAS  Google Scholar 

  • Meij, R., & Winkel, B. T. (2004). The emissions and environmental impact of PM 10 and trace elements from a modern coal-fired power plant equipped with ESP and wet FGD. Fuel Processing Technology, 85(6–7), 641–656. https://doi.org/10.1016/j.fuproc.2003.11.012.

    Article  CAS  Google Scholar 

  • Micó, C., Recatalá, L., Peris, M., & Sánchez, J. (2006). Assessing heavy metal sources in agricultural soils of an European Mediterranean area by multivariate analysis. Chemosphere, 65(5), 863–872.

    Article  CAS  Google Scholar 

  • Miller, J. R., Hudsonedwards, K. A., Lechler, P. J., Preston, D., & Macklin, M. G. (2004). Heavy metal contamination of water, soil and produce within riverine communities of the Río Pilcomayo basin, Bolivia. Science of the Total Environment, 320(2), 189–209.

    Article  CAS  Google Scholar 

  • Nannoni, F., Protano, G., & Riccobono, F. (2011). Fractionation and geochemical mobility of heavy elements in soils of a mining area in northern Kosovo. Geoderma, 161(1–2), 63–73. https://doi.org/10.1016/j.geoderma.2010.12.008.

    Article  CAS  Google Scholar 

  • National Health Commission of the People’s Republic of China, & China Food and Drug Administration (2017). Chinese National standards on food safety (GB2762-2017). http://www.chinasugar.org.cn/d/file/2017-04-24/343851aec93175f41f2c91d367dcd417.pdf Accessed 25 Oct 2019. (in Chinese).

  • Noli, F., & Tsamos, P. (2016). Concentration of heavy metals and trace elements in soils, waters and vegetables and assessment of health risk in the vicinity of a lignite-fired power plant. Science of the Total Environment, 563-564, 377–385. https://doi.org/10.1016/j.scitotenv.2016.04.098.

    Article  CAS  Google Scholar 

  • Özkul, C. (2016). Heavy metal contamination in soils around the Tunçbilek Thermal Power Plant (Kütahya, Turkey). Environmental Monitoring and Assessment, 188(5), 284.

    Article  CAS  Google Scholar 

  • Peng, M., Zhao, C., Ma, H., Yang, Z., Yang, K., Liu, F., Li, K., Yang, Z., Tang, S., Guo, F., Liu, X., & Cheng, H. (2020). Heavy metal and Pb isotopic compositions of soil and maize from a major agricultural area in Northeast China: Contamination assessment and source apportionment. Journal of Geochemical Exploration, 208, 106403. https://doi.org/10.1016/j.gexplo.2019.106403.

    Article  CAS  Google Scholar 

  • Pouladi, N., Møller, A. B., Tabatabai, S., & Greve, M. H. (2019). Mapping soil organic matter contents at field level with cubist, random forest and kriging. Geoderma, 342, 85–92. https://doi.org/10.1016/j.geoderma.2019.02.019.

    Article  CAS  Google Scholar 

  • Querol, X., Fernández-Turiel, J., & López-Soler, A. (1995). Trace elements in coal and their behaviour during combustion in a large power station. Fuel, 74(3), 331–343. https://doi.org/10.1016/0016-2361(95)93464-O.

    Article  CAS  Google Scholar 

  • Querol, X., Juan, R., Lopez-Soler, A., Fernandez-Turiel, J., & Ruiz, C. R. (1996). Mobility of trace elements from coal and combustion wastes. Fuel, 75(7), 821–838. https://doi.org/10.1016/0016-2361(96)00027-0.

    Article  CAS  Google Scholar 

  • Rastmanesh, F., Moore, F., & Keshavarzi, B. (2010). Speciation and phytoavailability of heavy metals in contaminated soils in Sarcheshmeh area, Kerman province, Iran. Bulletin of Environmental Contamination and Toxicology, 85(5), 515–519.

    Article  CAS  Google Scholar 

  • Rauret, G., López-Sánchez, J., Sahuquillo, A., Rubio, R., Davidson, C., AM, U., et al. (1999). Improvement of the BCR three step sequential extraction procedure prior to the certification of new sediment and soil reference materials. Journal of Environmental Monitoring, 1(1), 57–61.

    Article  CAS  Google Scholar 

  • Ren, D., Zhao, F., Dai, S., Zhang, J., & Luo, K. (2006). Geochemistry of trace elements in coal. Beijing: Science Press. (in Chinese).

  • Rodríguez, L., Ruiz, E., Alonso-Azcárate, J., & Rincón, J. (2009). Heavy metal distribution and chemical speciation in tailings and soils around a Pb-Zn mine in Spain. Journal of Environmental Management, 90(2), 1106–1116.

    Article  CAS  Google Scholar 

  • Rodushkin, I., Ruth, T., Huhtasaari, Å., Luleå, T. U., Geovetenskap, O. M., & Institutionen, F. S. O. N. (1999). Comparison of two digestion methods for elemental determinations in plant material by ICP techniques. Analytica Chimica Acta, 378(1–3), 191–200. https://doi.org/10.1016/S0003-2670(98)00635-7.

    Article  CAS  Google Scholar 

  • Sahuquillo, A., López-Sánchez, J. F., Rubio, R., Rauret, G., Thomas, R. P., Davidson, C. M., & Ure, A. M. (1999). Use of a certified reference material for extractable trace metals to assess sources of uncertainty in the BCR three-stage sequential extraction procedure. Analytica Chimica Acta, 382(3), 317–327. https://doi.org/10.1016/S0003-2670(98)00754-5.

    Article  CAS  Google Scholar 

  • Shah, P., Strezov, V., Prince, K., & Nelson, P. F. (2008). Speciation of As, Cr, Se and Hg under coal fired power station conditions. Fuel, 87(10–11), 1859–1869. https://doi.org/10.1016/j.fuel.2007.12.001.

    Article  CAS  Google Scholar 

  • Shen, F., Liao, R., Ali, A., Mahar, A., Guo, D., Li, R., Xining, S., Awasthi, M. K., Wang, Q., & Zhang, Z. (2017). Spatial distribution and risk assessment of heavy metals in soil near a Pb/Zn smelter in Feng County, China. Ecotoxicology and Environmental Safety, 139, 254–262.

    Article  CAS  Google Scholar 

  • Shi, J., Huang, W., Chen, P., Tang, S., & Chen, X. (2018). Concentration and distribution of cadmium in coals of China. Minerals, 8(2), 48. https://doi.org/10.3390/min8020048.

    Article  CAS  Google Scholar 

  • Song, D. Y., Yin-Juan, M. A., Qin, Y., Wang, W. F., & Zheng, C. G. (2011). Volatility and mobility of some trace elements in coal from Shizuishan Power Plant. Journal of Fuel Chemistry & Technology, 39(5), 328–332. https://doi.org/10.1016/S1872-5813(11)60024-8.

    Article  CAS  Google Scholar 

  • Sun, Y., Zhou, Q., Xie, X., & Liu, R. (2010). Spatial, sources and risk assessment of heavy metal contamination of urban soils in typical regions of Shenyang, China. Journal of Hazardous Materials, 174(1–3), 455–462.

    Article  CAS  Google Scholar 

  • Tang, Q., Liu, G., Yan, Z., & Sun, R. (2012). Distribution and fate of environmentally sensitive elements (arsenic, mercury, stibium and selenium) in coal-fired power plants at Huainan, Anhui, China. Fuel, 95, 334–339. https://doi.org/10.1016/j.fuel.2011.12.052.

    Article  CAS  Google Scholar 

  • Tang, Q., Liu, G., Zhou, C., Zhang, H., & Sun, R. (2013). Distribution of environmentally sensitive elements in residential soils near a coal-fired power plant: potential risks to ecology and children’s health. Chemosphere, 93(10), 2473–2479.

    Article  CAS  Google Scholar 

  • Tian, H., Liu, K., Zhou, J., Lu, L., Hao, J., Qiu, P., Gao, J., Zhu, C., Wang, K., & Hua, S. (2014). Atmospheric emission inventory of hazardous trace elements from China’s coal-fired power plants—temporal trends and spatial variation characteristics. Environmental Science & Technology, 48(6), 3575–3582.

    Article  CAS  Google Scholar 

  • Ullrich, S. M., Ramsey, M. H., & Helios-Rybicka, E. (1999). Total and exchangeable concentrations of heavy metals in soils near Bytom, an area of Pb/Zn mining and smelting in upper Silesia, Poland. Applied Geochemistry, 14(2), 187–196. https://doi.org/10.1016/S0883-2927(98)00042-0.

    Article  CAS  Google Scholar 

  • Vassilev, S. V., Eskenazy, G. M., & Vassileva, C. G. (2001). Behaviour of elements and minerals during preparation and combustion of the Pernik coal, Bulgaria. Fuel Processing Technology, 72(2), 103–129. https://doi.org/10.1016/S0378-3820(01)00186-2.

    Article  CAS  Google Scholar 

  • Vassileva, C. G., & Vassilev, S. V. (2005). Behaviour of inorganic matter during heating of Bulgarian coals. 1. Lignites. Fuel Processing Technology, 86(12–13), 1297–1333. https://doi.org/10.1016/j.fuproc.2005.01.024.

    Article  CAS  Google Scholar 

  • Vejahati, F., Xu, Z., & Gupta, R. (2010). Trace elements in coal: associations with coal and minerals and their behavior during coal utilization – a review. Fuel, 89(4), 904–911. https://doi.org/10.1016/j.fuel.2009.06.013.

    Article  CAS  Google Scholar 

  • Vershinina, K., Shlegel, N., & Strizhak, P. (2019). Combustion of wet coal processing waste and coal slime as components of fuel slurries. Combustion Science and Technology, 1–20. https://doi.org/10.1080/00102202.2019.1684908.

  • Wang, W., Qin, Y., Wang, J., & Li, J. (2009). Partitioning of hazardous trace elements during coal preparation. Procedia Earth and Planetary Science, 1(1), 838–844. https://doi.org/10.1016/j.proeps.2009.09.131.

    Article  Google Scholar 

  • Weiler, J., Firpo, B. A., & Schneider, I. A. H. (2020). Technosol as an integrated management tool for turning urban and coal mining waste into a resource. Minerals Engineering, 147, 106179. https://doi.org/10.1016/j.mineng.2019.106179.

    Article  CAS  Google Scholar 

  • Wilczyńska-Michalik, W., Dańko, J., & Michalik, M. (2020). Characteristics of particulate matter emitted from a coal-fired power plant. Polish Journal of Environmental Studies, 29(2), 1411–1420. https://doi.org/10.15244/pjoes/106034.

    Article  Google Scholar 

  • Wu, H., Glarborg, P., Frandsen, Jappe, F., et al. (2013). Trace elements in co-combustion of solid recovered fuel and coal. Fuel Processing Technology, 105(1), 212–221.

    Article  CAS  Google Scholar 

  • Xie, W., He, Y., Zhu, X., Ge, L., Huang, Y., & Wang, H. (2013). Liberation characteristics of coal middlings comminuted by jaw crusher and ball mill. International Journal of Mining Science and Technology, 23(5), 669–674. https://doi.org/10.1016/j.ijmst.2013.08.009.

    Article  Google Scholar 

  • Xu, W. (2014). The mechanism of Cd tolerance and the enhancement of Cd phytoremediation in maize (Zea mays L.) CT38. Thesis, South China University of Technology, Guangzhou, Guangdong, China. (in Chinese).

  • Xu, Z., Ni, S., Tuo, X. G., & Zhang, C. J. (2008). Calculation of heavy metals’ toxicity coefficient in the evaluation of potential ecological risk index. Chinese Journal of Environmental Science and Technology, 31(2), 112–115. (in Chinese).

  • Yang, G., Zhu, G., Li, H., Han, X., Li, J., & Ma, Y. (2018). Accumulation and bioavailability of heavy metals in a soil-wheat/maize system with long-term sewage sludge amendments. Journal of Integrative Agriculture, 17(8), 1861–1870. https://doi.org/10.1016/S2095-3119(17)61884-7.

    Article  CAS  Google Scholar 

  • Zadrapova, D., Titera, A., Szakova, J., Cadkova, Z., Cudlin, O., Najmanova, J., et al. (2019). Mobility and bioaccessibility of risk elements in the area affected by the long-term opencast coal mining. Journal of Environmental Science and Health, Part A, 54(12), 1159–1169. https://doi.org/10.1080/10934529.2019.1633854.

    Article  CAS  Google Scholar 

  • Zhou, C. (2015). The environmental geochemistry of trace elements during the utilization of coal gangue. Thesis, University of Science and Technology of China, Hefei, Anhui, China. (in Chinese).

  • Zhou, X., & Wang, X. (2019). Impact of industrial activities on heavy metal contamination in soils in three major urban agglomerations of China. Journal of Cleaner Production, 230, 1–10. https://doi.org/10.1016/j.jclepro.2019.05.098.

    Article  CAS  Google Scholar 

  • Zhou, C., Liu, G., Fang, T., Wu, D., & Lam, P. K. S. (2014a). Partitioning and transformation behavior of toxic elements during circulated fluidized bed combustion of coal gangue. Fuel, 135, 1–8. https://doi.org/10.1016/j.fuel.2014.06.034.

    Article  CAS  Google Scholar 

  • Zhou, C., Liu, G., Wu, D., Fang, T., Wang, R., & Fan, X. (2014b). Mobility behavior and environmental implications of trace elements associated with coal gangue: a case study at the Huainan coalfield in China. Chemosphere, 95, 193–199. https://doi.org/10.1016/j.chemosphere.2013.08.065.

    Article  CAS  Google Scholar 

  • Zhou, C., Liu, G., Wu, S., & Lam, P. K. S. (2014c). The environmental characteristics of usage of coal gangue in bricking-making: a case study at Huainan, China. Chemosphere, 95, 274–280.

    Article  CAS  Google Scholar 

Download references

Funding

The work was financially supported by the National Natural Science Foundation of China (Grant No. 41173115).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Daishe Wu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 836 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, D., Wu, D., Xu, F. et al. Assessment of soil and maize contamination by TE near a coal gangue–fired thermal power plant. Environ Monit Assess 192, 541 (2020). https://doi.org/10.1007/s10661-020-08510-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10661-020-08510-z

Keywords

Navigation