Skip to main content
Log in

Simultaneous Disruption of Both Polyubiquitin Genes Affects Proteasome Function and Decreases Cellular Proliferation

  • Original Paper
  • Published:
Cell Biochemistry and Biophysics Aims and scope Submit manuscript

Abstract

The ubiquitin (Ub) proteasome system is important for maintaining protein homeostasis and has various roles in cell signaling, proliferation, and cell cycle regulation. In mammals, Ub is encoded by two monoubiquitin and two polyubiquitin genes. Although reduced levels of Ub due to the disruption of one polyubiquitin gene are known to decrease cell proliferation, the effect of disrupting both polyubiquitin genes remains elusive. Polyubiquitin gene Ubc knockout mice are embryonically lethal and polyubiquitin gene Ubb knockout mice are infertile. Thus, it is difficult to study the effects of double knockouts (DKOs). In the present study, the CRISPR/Cas9 system was used to simultaneously knockout both polyubiquitin genes, UBB and UBC, in HEK293T and HeLa cells. In DKO cells, growth decreased significantly compared to the control cells. We observed reduced proteasome function and reduced levels of free Ub in DKO cells. However, the levels of purified proteasome were not different between control and DKO cells, although the mRNA levels of proteasomal subunits were significantly increased in latter. We propose that the reduction of Ub levels, by disruption of both polyubiquitin genes, resulted in an altered proteasomal status, leading to the reduced proteasome activity, and decreased cellular proliferation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Ub:

Ubiquitin

DKO:

Double knockout

UPS:

Ubiquitin proteasome system

MCM2:

Minichromosome maintenance protein 2

PTM:

Posttranslational modification

References

  1. Hershko, A., & Ciechanover, A. (1998). The ubiquitin system. Annual Review of Biochemistry, 67, 425–479.

    Article  CAS  Google Scholar 

  2. Ryu, K. Y., Baker, R. T., & Kopito, R. R. (2006). Ubiquitin-specific protease 2 as a tool for quantification of total ubiquitin levels in biological specimens. Analytical Biochemistry, 353, 153–155.

    Article  CAS  Google Scholar 

  3. Park, C. W., & Ryu, K. Y. (2014). Cellular ubiquitin pool dynamics and homeostasis. BMB Reports, 47, 475–482.

    Article  Google Scholar 

  4. Kaiser, S. E., Riley, B. E., Shaler, T. A., Trevino, R. S., Becker, C. H., Schulman, H., & Kopito, R. R. (2011). Protein standard absolute quantification (PSAQ) method for the measurement of cellular ubiquitin pools. Nature Methods, 8, 691–696.

    Article  CAS  Google Scholar 

  5. Wiborg, O., Pedersen, M. S., Wind, A., Berglund, L. E., Marcker, K. A., & Vuust, J. (1985). The human ubiquitin multigene family: some genes contain multiple directly repeated ubiquitin coding sequences. The EMBO Journal, 4, 755–759.

    Article  CAS  Google Scholar 

  6. Reyes-Turcu, F. E., Ventii, K. H., & Wilkinson, K. D. (2009). Regulation and cellular roles of ubiquitin-specific deubiquitinating enzymes. Annual Review of Biochemistry, 78, 363–397.

    Article  CAS  Google Scholar 

  7. Weissman, A. M., Shabek, N., & Ciechanover, A. (2011). The predator becomes the prey: regulating the ubiquitin system by ubiquitylation and degradation. Nature Reviews Molecular Cell Biology, 12, 605–620.

    Article  CAS  Google Scholar 

  8. Swaminathan, S., Amerik, A. Y., & Hochstrasser, M. (1999). The Doa4 deubiquitinating enzyme is required for ubiquitin homeostasis in yeast. Molecular Biology of the Cell, 10, 2583–2594.

    Article  CAS  Google Scholar 

  9. Hanna, J., Meides, A., Zhang, D. P., & Finley, D. (2007). A ubiquitin stress response induces altered proteasome composition. Cell, 129, 747–759.

    Article  CAS  Google Scholar 

  10. Anderson, C., Crimmins, S., Wilson, J. A., Korbel, G. A., Ploegh, H. L., & Wilson, S. M. (2005). Loss of Usp14 results in reduced levels of ubiquitin in ataxia mice. Journal of Neurochemistry, 95, 724–731.

    Article  CAS  Google Scholar 

  11. Ryu, K. Y., Garza, J. C., Lu, X. Y., Barsh, G. S., & Kopito, R. R. (2008). Hypothalamic neurodegeneration and adult-onset obesity in mice lacking the Ubb polyubiquitin gene. Proceedings of the National Academy of Sciences of the United States of America, 105, 4016–4021.

    Article  CAS  Google Scholar 

  12. Ryu, K. Y., Maehr, R., Gilchrist, C. A., Long, M. A., Bouley, D. M., Mueller, B., Ploegh, H. L., & Kopito, R. R. (2007). The mouse polyubiquitin gene UbC is essential for fetal liver development, cell-cycle progression and stress tolerance. The EMBO Journal, 26, 2693–2706.

    Article  CAS  Google Scholar 

  13. Ryu, K. Y., Sinnar, S. A., Reinholdt, L. G., Vaccari, S., Hall, S., Garcia, M. A., Zaitseva, T. S., Bouley, D. M., Boekelheide, K., Handel, M. A., Conti, M., & Kopito, R. R. (2008). The mouse polyubiquitin gene Ubb is essential for meiotic progression. Molecular and Cellular Biology, 28, 1136–1146.

    Article  CAS  Google Scholar 

  14. Bhaya, D., Davison, M., & Barrangou, R. (2011). CRISPR-Cas systems in bacteria and archaea: versatile small RNAs for adaptive defense and regulation. Annual Review of Genetics, 45, 273–297.

    Article  CAS  Google Scholar 

  15. Sapranauskas, R., Gasiunas, G., Fremaux, C., Barrangou, R., Horvath, P., & Siksnys, V. (2011). The Streptococcus thermophilus CRISPR/Cas system provides immunity in Escherichia coli. Nucleic Acids Research, 39, 9275–9282.

    Article  CAS  Google Scholar 

  16. Lieber, M. R.(2010). The mechanism of double-strand DNA break repair by the nonhomologous DNA end-joining pathway. Annual Review of Biochemistry, 79, 181–211.

    Article  CAS  Google Scholar 

  17. Jung, B. K., Park, C. W., & Ryu, K. Y. (2018). Temporal downregulation of the polyubiquitin gene Ubb affects neuronal differentiation, but not maturation, in cells cultured in vitro. Scientific Reports, 8, 2629.

    Article  Google Scholar 

  18. Lim, D., Park, C. W., Ryu, K. Y., & Chung, H. (2019). Disruption of the polyubiquitin gene Ubb causes retinal degeneration in mice. Biochemical and Biophysical Research Communications, 513, 35–40.

    Article  CAS  Google Scholar 

  19. Bae, J. S., & Ryu, K. Y. (2018). Cytoprotective role of ubiquitin against toxicity induced by polyglutamine-expanded aggregates. Biochemical and Biophysical Research Communications, 500, 344–350.

    Article  CAS  Google Scholar 

  20. Sentmanat, M. F., Peters, S. T., Florian, C. P., Connelly, J. P., & Pruett-Miller, S. M. (2018). A survey of validation strategies for CRISPR-Cas9 editing. Scientific Reports, 8, 888.

    Article  Google Scholar 

  21. Ryu, H. W., Park, C. W., & Ryu, K. Y. (2014). Disruption of polyubiquitin gene Ubb causes dysregulation of neural stem cell differentiation with premature gliogenesis. Scientific Reports, 4, 7026.

    Article  Google Scholar 

  22. Park, C. W., Ryu, H. W., & Ryu, K. Y. (2012). Locus coeruleus neurons are resistant to dysfunction and degeneration by maintaining free ubiquitin levels although total ubiquitin levels decrease upon disruption of polyubiquitin gene Ubb. Biochemical and Biophysical Research Communications, 418, 541–546.

    Article  CAS  Google Scholar 

  23. Naujokat, C., & Hoffmann, S. (2002). Role and function of the 26S proteasome in proliferation and apoptosis. Laboratory Investigation, 82, 965–980.

    Article  CAS  Google Scholar 

  24. Yan, H., Merchant, A. M., & Tye, B. K. (1993). Cell cycle-regulated nuclear localization of MCM2 and MCM3, which are required for the initiation of DNA synthesis at chromosomal replication origins in yeast. Genes & Development, 7, 2149–2160.

    Article  CAS  Google Scholar 

  25. Shi, D., & Grossman, S. R. (2010). Ubiquitin becomes ubiquitous in cancer: emerging roles of ubiquitin ligases and deubiquitinases in tumorigenesis and as therapeutic targets. Cancer Biology & Therapy, 10, 737–747.

    Article  CAS  Google Scholar 

  26. Jager, S., Groll, M., Huber, R., Wolf, D. H., & Heinemeyer, W. (1999). Proteasome beta-type subunits: unequal roles of propeptides in core particle maturation and a hierarchy of active site function. Journal of Molecular Biology, 291, 997–1013.

    Article  CAS  Google Scholar 

  27. Kors, S., Geijtenbeek, K., Reits, E., & Schipper-Krom, S. (2019). Regulation of proteasome activity by (post-)transcriptional mechanisms. Frontiers in Molecular Biosciences, 6, 48

    Article  CAS  Google Scholar 

  28. Leestemaker, Y., de Jong, A., Witting, K. F., Penning, R., Schuurman, K., Rodenko, B., Zaal, E. A., van de Kooij, B., Laufer, S., Heck, A. J. R., Borst, J., Scheper, W., Berkers, C. R., & Ovaa, H. (2017). Proteasome activation by small molecules. Cell Chemical Biology, 24, 725–736.e7.

    Article  CAS  Google Scholar 

  29. Lee, S. H., Park, Y., Yoon, S. K., & Yoon, J. B. (2010). Osmotic stress inhibits proteasome by p38 MAPK-dependent phosphorylation. Journal of Biological Chemistry, 285, 41280–41289.

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Research Foundation of Korea (NRF) grant funded by the Korea government (MSIT) (Nos. 2019R1F1A1061484; 2020R1F1A1070847) to K.-Y.R.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kwon-Yul Ryu.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, CW., Bae, JS. & Ryu, KY. Simultaneous Disruption of Both Polyubiquitin Genes Affects Proteasome Function and Decreases Cellular Proliferation. Cell Biochem Biophys 78, 321–329 (2020). https://doi.org/10.1007/s12013-020-00933-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12013-020-00933-2

Keywords

Navigation