Skip to main content
Log in

Calculation of the Temperature Dependence of the Unrelaxed Shear Modulus of High-Entropy Bulk Metallic Glasses from Calorimetric Data

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

A method is proposed to calculate the temperature dependence of the unrelaxed shear modulus of high-entropy bulk metallic glasses from differential scanning calorimetry data. The results obtained by this method are shown to be in good agreement with the results of specially performed precision measurements of the unrelaxed shear modulus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. P. George, D. Raabe, and R. O. Ritchie, Nat. Rev. Mater. 4, 515 (2019).

    Article  ADS  Google Scholar 

  2. Y. F. Ye, Q. Wang, J. Lu, C. T. Liu, and Y. Yang, Mater. Today 19, 349 (2016).

    Article  Google Scholar 

  3. J. W. Yeh, S. K. Chen, S. J. Lin, J. Y. Gan, T. S. Chin, T. T. Shun, C. H. Tsau, and S. Y. Chang, Adv. Eng. Mater. 6, 299 (2004).

    Article  Google Scholar 

  4. Z. P. Lu, H. Wang, M. W. Chen, I. Baker, J. W. Yeh, C. T. Liu, and T. G. Nieh, Intermetallics 66, 67 (2015).

    Article  Google Scholar 

  5. S. Guo, Q. Hu, C. Ng, and C. T. Liu, Intermetallics 41, 96 (2013).

    Article  Google Scholar 

  6. M. H. Tsai and J. W. Yeh, Mater. Res. Lett. 4, 515 (2014).

    Google Scholar 

  7. W. H. Wang, JOM 66, 2067 (2014).

    Article  Google Scholar 

  8. J. S. Qiao, J. M. Pelletier, N. Li, and Y. Yao, J. Iron Steel Res. Int. 23, 19 (2016).

    Article  Google Scholar 

  9. J. C. Dyre, Rev. Mod. Phys. 78, 953 (2006).

    Article  ADS  Google Scholar 

  10. S. V. Nemilov, Russ. J. Phys. Chem. 42, 726 (1968).

    Google Scholar 

  11. A. V. Granato, Phys. Rev. Lett. 68, 974 (1992).

    Article  ADS  Google Scholar 

  12. A. V. Granato, Eur. J. Phys. 87, 18 (2014).

    Article  ADS  Google Scholar 

  13. V. A. Khonik and N. P. Kobelev, Metals 9, 605 (2019).

    Article  Google Scholar 

  14. W. G. Wolfer, in Comprehensive Nuclear Materials, Ed. by R. J. M. Konings (Elsevier, Amsterdam, 2012).

  15. R. A. Konchakov, A. S. Makarov, G. V. Afonin, M. A. Kretova, N. P. Kobelev, and V. A. Khonik, JETP Lett. 109, 460 (2019).

    Article  ADS  Google Scholar 

  16. S. Wiederhorn, in Springer Handbook of Materials Measurement Methods, Ed. by H. Czichos, T. Saito, and L. Smith (Springer, Berlin, 2006).

  17. Y. J. Duan, J. C. Qiao, D. Crespo, E. V. Goncharova, A. S. Makarov, G. V. Afonin, and V. A. Khonik, J. Alloys Compd. 830, 154564 (2020).

    Article  Google Scholar 

  18. H. Y. Ding, Y. Shao, P. Gong, J. F. Li, and K. F. Yao, Mater. Lett. 125, 151 (2014).

    Article  Google Scholar 

  19. T. Wada, J. Jiang, K. Yubuta, H. Kato, and A. Takeuchi, Materialia 7, 100372 (2019).

    Article  Google Scholar 

  20. A. N. Vasil’ev and Y. P. Gaidukov, Sov. Phys. Usp. 26, 952 (1983).

    Article  ADS  Google Scholar 

  21. Z. Evenson and R. Busch, Acta Mater. 59, 4404 (2011).

    Article  Google Scholar 

  22. J. Bünz and G. Wilde, J. Appl. Phys. 114, 223503 (2013).

    Article  ADS  Google Scholar 

  23. G. Wilde, G. P. Görler, R. Willnecker, and H. J. Fecht, J. Appl. Phys. 87, 1141 (2000).

    Article  ADS  Google Scholar 

  24. A. S. Makarov, V. A. Khonik, Yu. P. Mitrofanov, A. V. Granato, D. M. Joncich, and S. V. Khonik, Appl. Phys. Lett. 102, 091908 (2013).

    Article  ADS  Google Scholar 

  25. A. S. Makarov, Yu. P. Mitrofanov, G. V. Afonin, V. A. Khonik, and N. P. Kobelev, Phys. Solid State 57, 978 (2015).

    Article  ADS  Google Scholar 

  26. A. S. Makarov, Yu. P. Mitrofanov, G. V. Afonin, N. P. Kobelev, and V. A. Khonik, Intermetallics 87, 1 (2017).

    Article  Google Scholar 

  27. N. P. Kobelev and V. A. Khonik, J. Non-Cryst. Solids 427, 184 (2015).

    Article  ADS  Google Scholar 

  28. G. V. Afonin, Yu. P. Mitrofanov, A. S. Makarov, N. P. Kobelev, W. H. Wang, and V. A. Khonik, Acta Mater. 115, 204 (2016).

    Article  Google Scholar 

Download references

Funding

A.S. Makarov and E.V. Goncharova acknowledge the support of the President of the Russian Federation (project no. MK-1101.2020.2, Program for State Support of Young Scientists). J.C. Qiao acknowledges the support of the National Natural Science Foundation of China (project no. 51971178) and of the National Science Foundation of the Shanxi Province (project no. 2019JM-344).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. S. Makarov.

Additional information

Russian Text © The Author(s), 2020, published in Pis’ma v Zhurnal Eksperimental’noi i Teoreticheskoi Fiziki, 2020, Vol. 111, No. 10, pp. 691–696.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Makarov, A.S., Goncharova, E.V., Afonin, G.V. et al. Calculation of the Temperature Dependence of the Unrelaxed Shear Modulus of High-Entropy Bulk Metallic Glasses from Calorimetric Data. Jetp Lett. 111, 586–590 (2020). https://doi.org/10.1134/S0021364020100112

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020100112

Navigation