Skip to main content
Log in

Incorporating spatial interactions in zero-inflated negative binomial models for freight trip generation

  • Published:
Transportation Aims and scope Submit manuscript

Abstract

This paper formulates a spatial autoregressive zero-inflated negative binomial model for freight trip productions and attractions. The model captures the following freight trip characteristics: count data type, positive trip rates, overdispersion, zero-inflation, and spatial autocorrelation. The spatial autoregressive structure is applied in the negative binomial part of the models to obtain unbiased estimates of the effects of different regressors. Further, we estimate parameters using the full information maximum likelihood estimator. We perform empirical analysis with an establishment based freight survey conducted in Chennai. Separate models are estimated for trips generated by motorised two-wheelers and three-wheelers, and pickups besides an aggregate model. Spatial variables such as road density and indicator of geolocation are insignificant in all the models. In contrast, the spatial autocorrelation is significant in all of the models except for the freight trips attracted and produced by pickups. From a policy standpoint, the elasticity results show the importance of considering spatial autocorrelation. We also highlight the bias due to aggregation of vehicle classes, based on the elasticities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Agarwal, D.K., Gelfand, A.E., Citron-Pousty, S.: Zero-inflated models with application to spatial count data. Environ. Ecol. Stat. 9(4), 341–355 (2002)

    Article  Google Scholar 

  • Al-Deek, H.M., Johnson, G., Mohamed, A., El-Maghraby, A.: Truck trip generation models for seaports with container and trailer operation. Transp. Res. Rec. 1719(1), 1–9 (2000)

    Article  Google Scholar 

  • Anselin, L.: Spatial econometrics. A companion to theoretical econometrics, 310–330 (2001)

  • Anselin, L.: Spatial Econometrics: Methods and Models, vol. 4. Springer, Berlin (2013)

    Google Scholar 

  • Anselin, L., Griffith, D.A.: Do spatial effecfs really matter in regression analysis? Pap. Reg. Sci. 65(1), 11–34 (1988)

    Article  Google Scholar 

  • Anselin, L., Syabri, I., Kho, Y.: GeoDa: an introduction to spatial data analysis. Geogr. Anal. 38(1), 5–22 (2006)

    Article  Google Scholar 

  • Bastida, C., Holguín-Veras, J.: Freight Generation Models. Transp. Res. Rec. J. Transp. Res. Board 2097(2097), 51–61 (2009)

    Article  Google Scholar 

  • Blankmeyer, E., LeSage, J.P., Stutzman, J., Knox, K.J., Pace, R.K.: Statistical modeling of structured peer group dependence arising from salary benchmarking practices. Available at SSRN 1020458 (2007)

  • Blundell, R., Griffith, R., Windmeijer, F.: Individual effects and dynamics in count data models. J. Econom. 108(1), 113–131 (2002)

    Article  Google Scholar 

  • Campbell, S., Sanchez-Diaz, I., Lawson, C.T., Jaller, M., Holguin-Veras, J.: Comparison between industrial classification systems in freight trip generation modeling. Washington, DC, USA, vol. 12-3825 (2012)

  • Cascetta, E., Marzano, V., Papola, A.: Multi-regional input-output models for freight demand simulation at a national level. In: Ben-Akiva, M.E., Meersman, H., Van de Voorde, E. (eds.) Recent Developments in Transport Modelling: Lessons for the Freight Sector, pp. 93–116. Emerald Group Publishing Limited, Bingley (2008)

    Chapter  Google Scholar 

  • Case, A.: Neighborhood influence and technological change. Reg. Sci. Urban Econ. 22(3), 491–508 (1992)

    Article  Google Scholar 

  • Chen, A., Yang, H., Lo, H.K., Tang, W.H.: Capacity reliability of a road network: an assessment methodology and numerical results. Transp. Res. Part B Methodol. 36(3), 225–252 (2002)

    Article  Google Scholar 

  • Cliff, A.D., Ord, J.K.: Spatial Processes: Models & Applications. Taylor & Francis, Milton Park (1981)

    Google Scholar 

  • CMDA: Administrative Units of Chennai (2017) http://www.cmdachennai.gov.in/

  • Eluru, N., Sener, I.N., Bhat, C.R., Pendyala, R.M., Axhausen, K.W.: Understanding residential mobility joint model of the reason for residential relocation and stay duration. Transp. Res. Rec. 2133, 64–74 (2009)

    Article  Google Scholar 

  • Florax, R.J., De Graaff, T.: The performance of diagnostic tests for spatial dependence in linear regression models: a meta-analysis of simulation studies. In: Anselin, L., Florax, R.J.G.M., Rey, S.J. (eds.) Advances in Spatial Econometrics, pp. 29–65. Springer, Berlin (2004)

    Chapter  Google Scholar 

  • Florax, R.J., Rey, S.: The impacts of misspecified spatial interaction in linear regression models. In: Anselin, L., Florax, R.J.G.M. (eds.) New Directions in Spatial Econometrics, pp. 111–135. Springer, Berlin (1995)

    Chapter  Google Scholar 

  • Frank, L., Bradley, M., Kavage, S., Chapman, J., Lawton, T.K.: Urban form, travel time, and cost relationships with tour complexity and mode choice. Transportation 35(1), 37–54 (2008)

    Article  Google Scholar 

  • Glaser, S.: Modelling of spatial effects in count data. PhD thesis, University of Hohenheim (2017a)

  • Glaser, S.: A review of spatial econometric models for count data. Technical report, Hohenheim Discussion Papers in Business, Economics and Social Sciences (2017b)

  • Greene, W.H.: Econometric analysis. Pearson Education India, New Delhi (2003)

    Google Scholar 

  • Guo, F., Aultman-Hall, L.: Alternative nationwide freight generation models. In: Proceedings of the Transportation Research Board 84th Annual Meeting, Washington DC (2005)

  • Holguín-Veras, J.: Revealed preference analysis of commercial vehicle choice process. J. Transp. Eng. 128(4), 336–346 (2002)

    Article  Google Scholar 

  • Holguín-Veras, J., Jaller, M., Destro, L., Ban, X., Lawson, C., Levinson, H.: Freight generation, freight trip generation, and perils of using constant trip rates. Transp. Res. Rec. J. Transp. Res. Board 2224, 68–81 (2011)

    Article  Google Scholar 

  • Holguín-Veras, J., Jaller, M., Sánchez-Díaz, I., Wojtowicz, J., Campbell, S., Levinson, H., Lawson, C., Powers, E.L., Tavasszy, L.A.: NCFRP Report 19—Freight Trip Generation and Land Use. October 2014 (2012)

  • Hong, J., Shen, Q., Zhang, L.: How do built-environment factors affect travel behavior? A spatial analysis at different geographic scales. Transportation 41(3), 419–440 (2014)

    Article  Google Scholar 

  • Ihaka, R., Gentleman, R.: R: a language for data analysis and graphics. J. Comput. Graph. Stat. 5(3), 299–314 (1996)

    Google Scholar 

  • Isgin, T., Bilgic, A., Forster, D.L., Batte, M.T.: Using count data models to determine the factors affecting farmers’ quantity decisions of precision farming technology adoption. Comput. Electron. Agric. 62(2), 231–242 (2008)

    Article  Google Scholar 

  • Kelejian, H.H., Prucha, I.R.: Specification and estimation of spatial autoregressive models with autoregressive and heteroskedastic disturbances. J. Econom. 157(1), 53–67 (2010)

    Article  Google Scholar 

  • Krisztin, T.: Semi-parametric spatial autoregressive models in freight generation modeling. Transp. Res. Part E Logist. Transp. Rev. 114, 121–143 (2018)

    Article  Google Scholar 

  • Krizek, K.J.: Neighborhood services, trip purpose, and tour-based travel. Transportation 30(4), 387–410 (2003)

    Article  Google Scholar 

  • Kulpa, T.: Freight truck trip generation modelling at regional level. ProcediaSoc. Behav. Sci. 111, 197–202 (2014)

    Article  Google Scholar 

  • Lambert, D.M., Brown, J.P., Florax, R.J.: A two-step estimator for a spatial lag model of counts: theory, small sample performance and an application. Reg. Sci. Urban Econ. 40(4), 241–252 (2010)

    Article  Google Scholar 

  • LeSage, J.P.: What regional scientists need to know about spatial econometrics. Rev. Reg. Stud. 44(1), 13–32 (2014)

    Google Scholar 

  • LeSage, J., Pace, R.K.: Introduction to Spatial Econometrics. Chapman and Hall/CRC, Boca Raton (2009)

    Book  Google Scholar 

  • LeSage, J.P., Pace, R.K.: The biggest myth in spatial econometrics. Econometrics 2(4), 217–249 (2014)

    Article  Google Scholar 

  • Liu, X., Prucha, I.R.: A robust test for network generated dependence. J. Econom. 207(1), 92–113 (2018)

    Article  Google Scholar 

  • Loquiha, O., Hens, N., Chavane, L., Temmerman, M., Osman, N., Faes, C., Aerts, M.: Mapping maternal mortality rate via spatial zero-inflated models for count data: a case study of facility-based maternal deaths from mozambique. PLoS One 13(11), e0202186 (2018)

    Article  Google Scholar 

  • Metulini, R., Patuelli, R., Griffith, D.A.: A spatial-filtering zero-inflated approach to the estimation of the gravity model of trade. Econometrics 6(1), 9 (2018)

    Article  Google Scholar 

  • Middela, M.S., Bhushan, S., Prasad, C.S.R.K.: Modelling freight generation and distribution for nationwide interstate freight movement. Transp. Dev. Econ. 4(1), 6 (2018)

    Article  Google Scholar 

  • Middela, M.S., Mahesh, S., Sripada, S.K., Kancharla, S.R., Devi, G., Ramadurai, G.: Estimating emissions from urban freight Trips. In: 15th World Conference on Transport Research, Mumbai, India (2019)

  • Narayanamoorthy, S., Paleti, R., Bhat, C.R.: On accommodating spatial dependence in bicycle and pedestrian injury counts by severity level. Transp. Res. Part B Methodol. 55, 245–264 (2013)

    Article  Google Scholar 

  • Novak, D.C., Hodgdon, C., Guo, F., Aultman-Hall, L.: Nationwide freight generation models: a spatial regression approach. Netw. Spat. Econ. 11(1), 23–41 (2011)

    Article  Google Scholar 

  • Pinkse, J., Slade, M.E., Brett, C.: Spatial price competition: a semiparametric approach. Econometrica 70(3), 1111–1153 (2002)

    Article  Google Scholar 

  • Priya, C.D., Ramadurai, G., Devi, G.: Freight trip generation models for Chennai, India. In: Transportation research board 94th annual meeting, Washington, DC, USA, vol. 15-1763 (2015)

  • Quantum, G.: Development team, 2012. Quantum GIS geographic information system 2 (2013)

  • Ramadurai, G.: SUR model of urban freight trip generation by delivery vehicle type. In: Urban Freight and Behavior Change (2015)

  • Sánchez-Díaz, I.: Modeling urban freight generation: a study of commercial establishments’ freight needs. Transp. Res. Part A Policy Pract. 102, 3–17 (2017)

    Article  Google Scholar 

  • Sánchez-Díaz, I., Holguín-Veras, J., Wang, C.: Assessing the role of land-use, network characteristics and spatial effects on freight trip attraction. In: Transportation Research Board (TRB) 92nd Annual Meeting, Washington, DC (2013)

  • Sánchez-Díaz, I., Holguín-Veras, J., Wang, X.: An exploratory analysis of spatial effects on freight trip attraction. Transportation 43(1), 177–196 (2016)

    Article  Google Scholar 

  • Scott, D.M., Novak, D.C., Aultman-hall, L., Guo, F.: Network Robustness Index : a new method for identifying critical links and evaluating the performance of transportation networks. J. Transp. Geogr. 14(3), 215–227 (2006)

    Article  Google Scholar 

  • Stakhovych, S., Bijmolt, T.H.: Specification of spatial models: a simulation study on weights matrices. Pap. Reg. Sci. 88(2), 389–408 (2009)

    Article  Google Scholar 

  • Vinayak, P., Dias, F.F., Astroza, S., Bhat, C.R., Pendyala, R.M., Garikapati, V.M.: Accounting for multi-dimensional dependencies among decision-makers within a generalized model framework: An application to understanding shared mobility service usage levels. Transp. Policy 72, 129–137 (2018)

    Article  Google Scholar 

  • Wagner, T.: Regional traffic impacts of logistics-related land use. Transp. Policy 17(4), 224–229 (2010)

    Article  Google Scholar 

  • Whittle, P.: On stationary processes in the plane. Biometrika 41, 434–449 (1954)

    Article  Google Scholar 

  • Wisetjindawat, W., Sano, K.: A behavioral modeling in micro-simulation for urban freight transportation. J. East. Asia Soc. Transp. Stud. 5(3), 2193–2208 (2003)

    Google Scholar 

  • Wisetjindawat, W., Sano, K., Matsumoto, S., Raothanachonkun, P.: Micro-simulation model for modeling freight agents interactions in urban freight movement. In: 86th annual meeting of the transportation research board (August 2006):January 21–25 (2007)

  • Zeger, S.L., Qaqish, B.: Markov regression models for time series: a quasi-likelihood approach. Biometrics 44, 1019–1031 (1988)

    Article  Google Scholar 

  • Zhang, P., Peeta, S., Friesz, T.: Dynamic game theoretic model of multi-layer infrastructure networks. Netw. Spat. Econ. 5(2), 147–178 (2005)

    Article  Google Scholar 

  • Zhou, B.B., Kockelman, K.M.: Predicting the distribution of households and employment: a seemingly unrelated regression model with two spatial processes. J. Transp. Geogr. 17(5), 369–376 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

We thank the Shakti Sustainable Energy Foundation for funding the data collection for this research. We also thank three anonymous reviewers for their valuable comments on the first version of this paper. Mounisai Siddartha Middela acknowledges the discussions with Ganesh Ambi Ramakrishnan and Aravinda Devaraj that helped in improving the paper.

Author information

Authors and Affiliations

Authors

Contributions

The authors confirm contribution to the paper as follows: Conceptualisation: MSM and GR; Data collection: MSM and GR; Methodology: MSM and GR; Formal analysis and investigation: MSM and GR; Writing - original draft preparation: MSM; Writing—review and editing: MSM and GR; Funding acquisition: GR; Resources: GR; Supervision: GR.

Corresponding author

Correspondence to Mounisai Siddartha Middela.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: Sample-wide average elasticities of SAR-ZINB model

Appendix: Sample-wide average elasticities of SAR-ZINB model

Equation 11 gives the expected conditional mean of a random variable following a negative binomial distribution.

$$\begin{aligned} E(y|x) = exp({\bar{x}}'\hat{\beta }) \end{aligned}$$
(11)

The unconditional mean can be obtained as shown in Eq. 12.

$$\begin{aligned} E(y) = p(y_{i} >0) exp({\bar{x}}'\hat{\beta }) \end{aligned}$$
(12)

where,

$$\begin{aligned} p(y_{i} >0) = \frac{1}{1+exp({\bar{z}}'\hat{\gamma })} \end{aligned}$$

The elasticity of a variable is given by Eq. 13.

$$\begin{aligned} \varepsilon _{x_{m}}= & {} \frac{\partial }{\partial x_{m}}[E(y)] \times \frac{{\bar{x}}_{m}}{E(y)} \end{aligned}$$
(13)
$$\begin{aligned}= & {} \left( \frac{\partial }{\partial x_{m}}\left( \frac{1}{1+exp({\bar{z}}'\hat{\gamma })}\right) exp({\bar{x}}'\hat{\beta }) + \frac{\partial }{\partial x_{m}}\left( exp({\bar{x}}'\hat{\beta })\right) \frac{1}{1+exp({\bar{z}}'\hat{\gamma })} \right) \frac{{\bar{x}}_{m}}{E(y)} \end{aligned}$$
(14)

Solving the above equation and rearranging the terms gives the elasticities of independent variables of an non-spatial model (Eq. 9), similar to Isgin et al. (2008).

$$\begin{aligned} \varepsilon _{x_{m}} = \underbrace{{\bar{x}}_{m} \hat{\beta }_{m}}_\text {Count model}-\underbrace{\left[ \frac{exp({\bar{z}}\hat{\gamma })}{1+exp({\bar{z}}'\hat{\gamma })}\right] {\bar{x}}_{m} \hat{\gamma }_{m}}_\text {Inflation model} \end{aligned}$$
(15)

To account for the autoregressive nature of the model, the elasticities of count model are decomposed into direct and indirect effects (Eq. 10) for the SAR-ZINB model, following Lambert et al. (2010).

$$\begin{aligned} \varepsilon _{x_{m}}^{SAR} = \underbrace{\frac{\beta _{m}}{N} \sum _{j \ne i}^{N} a_{ii}^{-1}x_{mi}}_\text {Direct effects}+\underbrace{\frac{\beta _{m}}{N} \sum _{i=1}^{N} \sum _{j \ne i}^{N} a_{ij}^{-1}x_{mj}}_\text {Indirect effects}-\underbrace{\Bigg [\frac{exp({\bar{z}}'\hat{\gamma })}{1+exp({\bar{z}}'\hat{\gamma })}\Bigg ] {\bar{x}}_{m} \hat{\gamma }_{m}}_\text {Inflation model} \end{aligned}$$
(16)

where \(a_{ii}^{-1}\) and \(a_{ij}^{-1}\) refers to diagonal (off-diagonal) elements of the estimated spatial multiplier matrix \(A^{-1}\).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Middela, M.S., Ramadurai, G. Incorporating spatial interactions in zero-inflated negative binomial models for freight trip generation. Transportation 48, 2335–2356 (2021). https://doi.org/10.1007/s11116-020-10132-w

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11116-020-10132-w

Keywords

Navigation