Skip to main content

Advertisement

Log in

Studies on the characteristics of \(\hbox {TiO}_2\) photoanode and flavanol pigment as a sensitiser for DSSC applications

  • Published:
Pramana Aims and scope Submit manuscript

Abstract

In the present work, dye-sensitised solar cell (DSSC) is fabricated using natural dye (Tecoma Stans)-sensitised \(\hbox {TiO}_{\mathrm {2\, }}\) as the photoanode, platinum as the counter electrode and lithium iodide and iodine as the electrolyte. Initially, \(\hbox {TiO}_{\mathrm {2\, }}\) nanoparticles are synthesised by the sol–gel technique using glacial acetic acid as the hydrolysing agent. The photoanodes are prepared by the Doctor Blade technique using the synthesised nanoparticles coated onto the fluorine-doped tin oxide (FTO) substrate and annealed at 400, 500 and \(600^{\circ }\hbox {C}\) for 30 min. Structural analysis shows the anatase phase of the \(\hbox {TiO}_{\mathrm {2}}\) thin film with a tetragonal crystal structure. The optical transmittance is found to be around 95% with an optical band gap close to 3.1 eV and increases with an increase in annealing temperature. From the PL emission spectra, the excitation of the titania band is observed. The pigment flavan-4-ol which acts as a sensitiser is extracted from Tecoma Stans flower. From the absorption study of the pigment, the active region of radiation and the band gap are found to be around 550 nm and 2 eV respectively. FTIR analysis of the pigment shows a stable structure similar to that of the prepared photoanodes. CV analysis of the sensitiser shows maximum oxidation within the active region. Field emission scanning electron microscope (FE-SEM) analysis shows that the prepared photoanode (\(600^{\circ }\hbox {C}\)) has spherical shape. The overall photoconversion efficiency of Tecoma Stans-sensitised \(\hbox {TiO}_{\mathrm {2}}\) photoanode is 0.4491%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Brian O’Regan and Michael Gratzel, Nature 335, 737 (1991)

    ADS  Google Scholar 

  2. Qifeng Zhang and Guozhong Cao, Nano Today 6, 91 (2011)

    Google Scholar 

  3. X Zhang, M Ge, J Dong, J Huang, J He and Y Lai, ACS Sustain. Chem. Eng. 7, 558 (2019)

    Google Scholar 

  4. Yu Bai, Ivan Mora-Sero, Filippo De Angelis, Juan Bisquert and Peng Wang, Chem. Rev. 114, 10095 (2014)

    Google Scholar 

  5. He, Chao Liu, Kevin D Dubois, Tong Jin, Michael E Louis and Gonghu Li, Ind. Eng. Chem. Res51, 11841 (2012)

  6. Z Fei Yin, L Wu, H Gui Yang and Y Hua Su, Phys. Chem. Chem. Phys15, 4844 (2013)

  7. X Chen and S S Mao, Chem. Rev107, 2891 (2007)

    Google Scholar 

  8. J Nisar, Z Topalian, A De Sarkar, L Osterlund and R Ahuja, ACS Appl. Mater. Interfaces 5, 8516 (2013)

    Google Scholar 

  9. Z Xiu, M H Alfaruqi, J Gim, J Song, S Kim, T V Thi, P Duong, V Mathew and J Kim, Chem. Commun51, 12274 (2015)

    Google Scholar 

  10. Y Duan, N Fu, Q Liu, Y Fang, X Zhou, J Zhang and Y Lin, J. Phys. Chem. C 116, 8888 (2012)

    Google Scholar 

  11. K M Aiswaraya, T Raguram and K S Rajni, Polyhedron 176, 114267 (2020)

    Google Scholar 

  12. S Kathirvel, C Su, H C Lin, B R Chen and W R Li, Mater. Lett. 129, 149 (2014)

    Google Scholar 

  13. T Raguram and K S Rajni, J. Sol-Gel Sci. Technol.  93, 202 (2020)

    Google Scholar 

  14. L M Sikhwivhilu, S S Ray and N J Coville, Appl. Phys. A 94, 963 (2008)

    ADS  Google Scholar 

  15. M Okuya, K Nakade and S Kaneka, Sol. Energy Mater. Sol. Cells 70, 425 (2002)

    Google Scholar 

  16. S Sato, A Sobczynski, J M White, A J Bard, A Campion, M A Fox, T E Mallouk and S E Webber, J. Photochem. Photobiol. A 50, 283 (1989)

    Google Scholar 

  17. G Anburaj, M Marimuthu, V Rajasudha and R Manikandan, J. Pharmacogn Phytochem5, 172 (2016)

    Google Scholar 

  18. R Azimirad and S Safa, Pramana – J. Phys.  86, 653 (2016)

    ADS  Google Scholar 

  19. C R Tubio, F Guirian, J R Salgueiro and A Gil, Mater. Lett141, 203 (2015)

    Google Scholar 

  20. V S Mohite, M A Mahadik, S S Kumbhar, V P Kothavale, A V Moholkar, K Y Rajpure and C Bhosale, Ceram. Int.  41, 2202 (2015)

    Google Scholar 

  21. T Raguram and K S Rajni, Appl. Phys. A  125, 288 (2019)

    ADS  Google Scholar 

  22. Moges Tsegaa and F B Dejene, Heliyon 3, e00246 (2017), https://doi.org/10.1016/j.heliyon.2017.e00246

  23. L A Patterson, Phys. Rev. 56, 978 (1939)

    ADS  Google Scholar 

  24. Wenxiu Que, A Uddin and X Hu, J. Power Sources  159, 353 (2006)

    ADS  Google Scholar 

  25. Dan Tian, Chan-Juan Zhou and Ji-Huan He, Fractals 26, 1850083 (2018)

    ADS  Google Scholar 

  26. G E Fougere, J R Weertman, R W Siegel and S Kim, Scripta Metall. Mater. 26, 1879 (1992)

    Google Scholar 

  27. A Chokshi, A Rosen, J Karch and H Gleiter, Scripta Metall. 23, 1679 (1989)

    Google Scholar 

  28. Madan Singh and Mahipal Singh, Pramana – J. Phys. 84, 609 (2015)

    ADS  Google Scholar 

  29. V Swamy and L S Dubrovinsky, J. Phys. Chem. Solids 62, 673 (2001)

    ADS  Google Scholar 

  30. D R Hummer and P J Heaney, Powder Diffraction 22, 362 (2007)

    ADS  Google Scholar 

  31. A K M Muaz, U Hashim, Fatimah Ibrahim, K L Thong, Mas S Mohktar and Wei-Wen Liu, Microsyst. Tecchol.  22, 871 (2016)

    Google Scholar 

  32. R Nasiraei, M R Fadavieslam and H Azimi-juybari, Pramana – J. Phys. 87: 30 (2016)

    ADS  Google Scholar 

  33. N Gokilamani, N Muthukumarasamy and M Thambidurai, Adv. Mat. Res. 676, 108 (2013)

    Google Scholar 

  34. R S Dubey, Mater. Lett. 215, 312 (2018)

    Google Scholar 

  35. T H Gfroerer, Photoluminescence in analysis of surface and interfaces, Encyclopedia of analytical chemistry edited by R A Meyers (John Wiley & Sons Ltd, Chichester, 2000)

    Google Scholar 

  36. M Zacharias and P M Fauchet, Appl. Phys. Lett. 71, 380 (1997)

    ADS  Google Scholar 

  37. Yin Zhao, Chunzhong Li, Xiuhong Liu, Feng Gu, Haibo Jiang, Wei Shao, Ling Zhang and Ying He, Mater. Lett.  61, 79 (2007)

    Google Scholar 

  38. F Leiter, H Alves, D Pfisterer, N G Romanov, D M Hofmann and B K Meyer, Physica B 201, 340 (2003)

    Google Scholar 

  39. D Pan, N Zhao, Q Wang, S Jiang, X Ji and L An, Adv. Mater. 17, 1991 (2005)

    Google Scholar 

  40. Mou Pal, Umapada Pal, Justo Miguel, Gracia Y Jimenez and Felipe Perez-Rodriguez, Nanoscale Res. Lett. 7, 1 (2012)

  41. W F Zhang, M S Zhang and Z Yin, Phy. Status Solidi A 179, 319 (2000)

    ADS  Google Scholar 

  42. Isao Nakamura, Nobuaki Negishi, Shuzo Kutsuna, Tatsuhiko Ihara, Shinichi Sugihara and Koji Takeuchi, J. Mol. Catal. 161, 205 (2000)

  43. T S Senthil, N Muthukumarasamy, S Agilan, M Thambidurai and R Balasundaraprabhu, Mater. Sci. Eng. B 174, 102 (2010)

    Google Scholar 

  44. Y H Chang, C M Liu, C Chen and H E Cheng, J. Electrochem. Soc. 159, D401 (2012)

    Google Scholar 

  45. B Choudhury and A Choudhury, Physica E 56, 364 (2014)

    ADS  Google Scholar 

  46. Michael R Hoffman, Scot T Martin, Wonyong Choi and Detlef W Bahnemann, Chem. Rev. 95, 69 (1995)

    Google Scholar 

  47. Wei Kong, Bo Liu, Bo Ye, Zhongping Yu, Hua Wang, Guodong Qian and Zhiyu Wang, J. Nanomater. 2011, Article ID 467083 (2011)

  48. M S El Naschie, Chaos Solitons Fractals  30, 579 (2006)

    ADS  MathSciNet  Google Scholar 

  49. Ji-Huan He, Yu-Qin Wan and Lan Xu, Chaos Solitons Fractals 33, 26 (2007)

    ADS  Google Scholar 

  50. Ya Li and Ji-Huan He, Adsorpt. Sci. Technol.  37, 425 (2019), https://doi.org/10.1177/0263617419828268

    Article  Google Scholar 

  51. G Oskam, B V Bergeron and G J Meyer, J. Phys. Chem. B 105, 6867 (2001)

    Google Scholar 

  52. H Zhou, L Wu, Y Gao and T Ma, J. Photochem. Photobiol. A 219, 188 (2011)

    Google Scholar 

  53. T Raguram and K S Rajni, Optik 204, 164169 (2020)

    ADS  Google Scholar 

  54. N Gokilamani, N Muthukumarasamy, M Thambidurai, A Ranjitha, D Velauthapillai, T S Senthil and R Balasundaraprabhu, J. Mater. Sci.: Mater. Electron. 24, 3394 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr K Murugadass, Assistant Professor, Department of Sciences, Dr M Karthega, Assistant Professor, Amrita Materials Science Lab, Dr T G Sathish Babu, Associate Professor, Bio-Sensor Research Lab and Dr Sudip Kumar Batabyal, Research Scientist, Centre for Industrial Research and Innovation (ACIRI), Amrita Vishwa Vidyapeetham, Coimbatore, India, for providing lab facilities and their constant support.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K S Rajni.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vedavarshni, S., Raguram, T. & Rajni, K.S. Studies on the characteristics of \(\hbox {TiO}_2\) photoanode and flavanol pigment as a sensitiser for DSSC applications. Pramana - J Phys 94, 112 (2020). https://doi.org/10.1007/s12043-020-01982-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12043-020-01982-1

Keywords

PACS Nos

Navigation