Skip to main content

Advertisement

Log in

Molecular engineering of A–D–C–D–A configured small molecular acceptors (SMAs) with promising photovoltaic properties for high-efficiency fullerene-free organic solar cells

  • Published:
Optical and Quantum Electronics Aims and scope Submit manuscript

Abstract

Non fullerene small acceptor molecules in organic photovoltaics are proven beneficial than the traditional fullerene based acceptors for their fine contribution in organic solar cells. Researchers are constantly doing efforts for designing novel acceptor materials with promising photovoltaic properties. Designing of novel molecules by end-capped modifications is a convenient strategy to obtain high efficiency acceptor molecules for OSCs. Herein, we studied optoelectronic characteristics of five novel acceptor–donor–core–donor–acceptor configured small acceptor molecules (S1S5) after end-capped modifications of recently synthesized DF-PCIC molecule. Designed molecules S1S5 consist of 1,4-difluorobenzene (as central core), 4,4-bis(2-ethylhexyl)-2,6-dimethyl-4H-cyclopenta[1,2-b:5,4-b′]dithiophene as donor which directly attached with different end-capped acceptors. The electronic and optical properties of newly designed (S1S5) molecules are examined and compared with reference molecule with the aid of DFT and TD-DFT. Certain key parameters like frontier molecular orbitals analysis, density of states, dipole moment, binding energy along with transition density matrix, excitation energy, charge mobility, absorption maxima and charge transfer analysis have been performed in order to explore the photo-physical, optoelectronic and photovoltaic properties of designed and reference molecule. Out of newly designed structures, S4 displayed lowest energy band-gap (2.25 eV) with red-shifting in absorption spectrum (λmax = 712.43 nm) in chloroform which disclosed the perfect relationship between end-capped acceptor with large electron withdrawing character through extended conjugation. Similarly, S1 exhibited highest value (1.53 V) of open circuit voltage (Voc) with respect to PTB7-Th donor material owing to lower values of λe. Designed molecules exhibit better electron and hole mobility as compared to reference molecule R. All molecules express better absorption maximum, open circuit voltage, low excitation energies, comparable binding energies, large dipole moment and efficient electron and hole transport as compared to reference molecules. So, results these parameters suggest that end-capped modification is a convenient strategy in order to enhance the efficiency of OSCs. Therefore, conceptualized molecules are recommended to experimentalist for out-looking future developments of highly efficient solar cells.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  • Adamo, C., Barone, V.: Exchange functionals with improved long-range behavior and adiabatic connection methods without adjustable parameters: the m PW and m PW1PW models. J. Chem. Phys. 108(2), 664–675 (1998)

    ADS  Google Scholar 

  • Afzal, Z., Hussain, R., Khan, M.U., Khalid, M., Iqbal, J., Alvi, M.U., Adnan, M., Ahmed, M., Mehboob, M.Y., Hussain, M.: Designing indenothiophene-based acceptor materials with efficient photovoltaic parameters for fullerene-free organic solar cells. J. Mol. Model. 26(6), 137 (2020)

    Google Scholar 

  • Anctil, A., Babbitt, C.W., Raffaelle, R.P., Landi, B.J.: Material and energy intensity of fullerene production. Environ. Sci. Technol. 45(6), 2353–2359 (2011)

    ADS  Google Scholar 

  • Ans, M., Iqbal, J., Ahmad, Z., Muhammad, S., Hussain, R., Eliasson, B., Ayub, K.: Designing three-dimensional (3D) non-fullerene small molecule acceptors with efficient photovoltaic parameters. ChemistrySelect 3(45), 12797–12804 (2018)

    Google Scholar 

  • Arkhipov, V., Emelianova, E., Bässler, H.: Hot exciton dissociation in a conjugated polymer. Phys. Rev. Lett. 82(6), 1321 (1999)

    ADS  Google Scholar 

  • Bidwell, D.: Thinking through participation in renewable energy decisions. Nat. Energy 1(5), 1–4 (2016)

    Google Scholar 

  • Bin, H., Gao, L., Zhang, Z.-G., Yang, Y., Zhang, Y., Zhang, C., Chen, S., Xue, L., Yang, C., Xiao, M.: 11.4% Efficiency non-fullerene polymer solar cells with trialkylsilyl substituted 2D-conjugated polymer as donor. Nat. Commun. 7(1), 1–11 (2016)

    Google Scholar 

  • Chai, J.-D., Head-Gordon, M.: Long-range corrected hybrid density functionals with damped atom–atom dispersion corrections. Phys. Chem. Chem. Phys. 10(44), 6615–6620 (2008)

    Google Scholar 

  • Chen, Y., Wan, X., Long, G.: High performance photovoltaic applications using solution-processed small molecules. Acc. Chem. Res. 46(11), 2645–2655 (2013)

    Google Scholar 

  • Civalleri, B., Zicovich-Wilson, C.M., Valenzano, L., Ugliengo, P.: B3LYP augmented with an empirical dispersion term (B3LYP-D*) as applied to molecular crystals. CrystEngComm 10(4), 405–410 (2008)

    Google Scholar 

  • Cui, Y., Yao, H., Gao, B., Qin, Y., Zhang, S., Yang, B., He, C., Xu, B., Hou, J.: Fine-tuned photoactive and interconnection layers for achieving over 13% efficiency in a fullerene-free tandem organic solar cell. J. Am. Chem. Soc. 139(21), 7302–7309 (2017)

    Google Scholar 

  • Dai, S., Zhao, F., Zhang, Q., Lau, T.-K., Li, T., Liu, K., Ling, Q., Wang, C., Lu, X., You, W.: Fused nonacyclic electron acceptors for efficient polymer solar cells. J. Am. Chem. Soc. 139(3), 1336–1343 (2017)

    Google Scholar 

  • Deng, D., Zhang, Y., Zhang, J., Wang, Z., Zhu, L., Fang, J., Xia, B., Wang, Z., Lu, K., Ma, W.: Fluorination-enabled optimal morphology leads to over 11% efficiency for inverted small-molecule organic solar cells. Nat. Commun. 7(1), 1–9 (2016)

    ADS  Google Scholar 

  • Dennington, R.D., Keith, T.A., Millam, J.M.: GaussView 5.0.8. Gaussian Inc, Wallingford (2008)

    Google Scholar 

  • Dkhissi, A.: Excitons in organic semiconductors. Synth. Met. 161(13–14), 1441–1443 (2011)

    Google Scholar 

  • Duan, C., Zango, G., García Iglesias, M., Colberts, F.J., Wienk, M.M., Martínez-Díaz, M.V., Janssen, R.A., Torres, T.: The role of the axial substituent in subphthalocyanine acceptors for bulk-heterojunction solar cells. Angew. Chem. 129(1), 154–158 (2017)

    Google Scholar 

  • Fei, Z., Eisner, F.D., Jiao, X., Azzouzi, M., Röhr, J.A., Han, Y., Shahid, M., Chesman, A.S., Easton, C.D., McNeill, C.R.: An alkylated indacenodithieno [3, 2-b] thiophene-based nonfullerene acceptor with high crystallinity exhibiting single junction solar cell efficiencies greater than 13% with low voltage losses. Adv. Mater. 30(8), 1705209 (2018)

    Google Scholar 

  • Figa, V., Chiappara, C., Ferrante, F., Casaletto, M., Principato, F., Cataldo, S., Chen, Z., Usta, H., Facchetti, A., Pignataro, B.: Symmetric naphthalenediimidequaterthiophenes for electropolymerized electrochromic thin films. J. Mater. Chem. C 3(23), 5985–5994 (2015)

    Google Scholar 

  • Figà, V., Usta, H., Macaluso, R., Salzner, U., Ozdemir, M., Kulyk, B., Krupka, O., Bruno, M.: Electrochemical polymerization of ambipolar carbonyl-functionalized indenofluorene with memristive properties. Opt. Mater. 94, 187–195 (2019)

    ADS  Google Scholar 

  • Frisch, M.J., Trucks, G.W., Schlegel, H.B., Scuseria, G., Robb, M.A., Cheeseman, J.R., Scalmani, G., Barone, V., Mennucci, B., Petersson, G., Nakatsuji, H., Caricato, M., Li, X., Hratchian, H.P., Izmaylov, A.F., Bloino, J., Zheng, G., Sonnenberg, J.L., Hada, M., Ehara, M., Toyota, K., Fukuda, R., Hasegawa, J., Ishida, M., Nakajima, T., Honda, Y., Kitao, O., Nakai, H., Vreven, T., Montgomery, J.A., Peralta, J.E., Ogliaro, F., Bearpark, M., Heyd, J.J., Brothers, E., Kudin, K.N., Staroverov, V.N., Kobayashi, R., Normand, J., Raghavachari, K., Rendell, A., Burant, J.C., Iyengar, S.S., Tomasi, J., Cossi, M., Rega, N., Millam, J.M., Klene, M., Knox, J.E., Cross, J.B., Bakken, V., Adamo, C., Jaramillo, J., Gomperts, R., Stratmann, R.E., Yazyev, O., Austin, A.J., Cammi, R., Pomelli, C., Ochterski, J.W., Martin, R.L., Morokuma, K., Zakrzewski, V.J., Voth, G.A., Salvador, P., Dannenberg, J.J., Dapprich, S., Daniels, A.D., Farkas, O., Foresman, J.B., Ortiz, J.V., Cioslowski, J., Fox, D.J.: D. 0109, Revision D. 01. Gaussian. Inc., Wallingford (2009)

    Google Scholar 

  • Ghomrasni, S., Aribi, I., Chemek, M., Said, A.H., Alimi, K.: Some photophysical properties of new oligomer obtained from anodic oxidation of 4,4′-dimethoxychalcone. Opt. Mater. 78, 360–364 (2018)

    ADS  Google Scholar 

  • He, Y., Li, Y.: Fullerene derivative acceptors for high performance polymer solar cells. Phys. Chem. Chem. Phys. 13(6), 1970–1983 (2011)

    MathSciNet  Google Scholar 

  • Heeger, A.J.: Semiconducting polymers: the third generation. Chem. Soc. Rev. 39(7), 2354–2371 (2010)

    Google Scholar 

  • Holliday, S., Ashraf, R.S., Wadsworth, A., Baran, D., Yousaf, S.A., Nielsen, C.B., Tan, C.-H., Dimitrov, S.D., Shang, Z., Gasparini, N.: High-efficiency and air-stable P3HT-based polymer solar cells with a new non-fullerene acceptor. Nat. Commun. 7(1), 1–11 (2016)

    Google Scholar 

  • Huang, Y., Kramer, E.J., Heeger, A.J., Bazan, G.C.: Bulk heterojunction solar cells: morphology and performance relationships. Chem. Rev. 114(14), 7006–7043 (2014)

    Google Scholar 

  • Hussain, R., Khan, M.U., Mehboob, M.Y., Khalid, M., Iqbal, J., Ayub, K., Adnan, M., Ahmed, M., Atiq, K., Mahmood, K.: Enhancement in photovoltaic properties of N,N-diethylaniline based donor materials by bridging core modifications for efficient solar cells. ChemistrySelect 5(17), 5022–5034 (2020a)

    Google Scholar 

  • Hussain, R., Saeed, M., Mehboob, M.Y., Khan, S.U., Khan, M.U., Adnan, M., Ahmed, M., Iqbal, J., Ayub, K.: Density functional theory study of palladium cluster adsorption on a graphene support. RSC Adv. 10(35), 20595–20607 (2020b)

    Google Scholar 

  • Hussain, S., Chatha, S.A.S., Hussain, A.I., Hussain, R., Mehboob, M.Y., Muhammad, S., Ahmad, Z., Ayub, K.: Zinc-doped Boron phosphide nanocluster as efficient sensor for SO2. J. Chem. 2020, 2629596 (2020c). https://doi.org/10.1155/2020/2629596

    Article  Google Scholar 

  • Hussain, S., Hussain, R., Mehboob, M.Y., Chatha, S.A.S., Hussain, A.I., Umar, A., Khan, M.U., Ahmed, M., Adnan, M., Ayub, K.: Adsorption of phosgene gas on pristine and copper-decorated B12N12 nanocages: a comparative DFT STUDY. ACS Omega 5(13), 7641–7650 (2020d)

    Google Scholar 

  • Janjua, M.R.S.A., Khan, M.U., Khalid, M., Ullah, N., Kalgaonkar, R., Alnoaimi, K., Baqader, N., Jamil, S.: Theoretical and conceptual framework to design efficient dye-sensitized solar cells (DSSCs): molecular engineering by DFT method. J. Cluster Sci. (2020). https://doi.org/10.1007/s10876-020-01783-x

    Article  Google Scholar 

  • Khan, M.U., Khalid, M., Ibrahim, M., Braga, A.A.C., Safdar, M., Al-Saadi, A.A., Janjua, M.R.S.A.: First theoretical framework of triphenylamine–dicyanovinylene-based nonlinear optical dyes: structural modification of π-linkers. J. Phys. Chem. C 122(7), 4009–4018 (2018)

    Google Scholar 

  • Khan, M.U., Ibrahim, M., Khalid, M., Braga, A.A.C., Ahmed, S., Sultan, A.: Prediction of second-order nonlinear optical properties of D–p–A compounds containing novel fluorene derivatives: a promising route to giant hyperpolarizabilities. J. Cluster Sci. 30(2), 415–430 (2019a). https://doi.org/10.1007/s10876-018-01489-1

    Article  Google Scholar 

  • Khan, M.U., Ibrahim, M., Khalid, M., Jamil, S., Al-Saadi, A.A., Janjua, M.R.S.A.: Quantum chemical designing of indolo [3, 2, 1-jk] carbazole-based dyes for highly efficient nonlinear optical properties. Chem. Phys. Lett. 719, 59–66 (2019b). https://doi.org/10.1016/j.cplett.2019.01.043

    Article  ADS  Google Scholar 

  • Khan, M.U., Ibrahim, M., Khalid, M., Qureshi, M.S., Gulzar, T., Zia, K.M., Al-Saadi, A.A., Janjua, M.R.S.A.: First theoretical probe for efficient enhancement of nonlinear optical properties of quinacridone based compounds through various modifications. Chem. Phys. Lett. 715, 222–230 (2019c)

    ADS  Google Scholar 

  • Khan, M.U., Iqbal, J., Khalid, M., Hussain, R., Braga, A.A.C., Hussain, M., Muhammad, S.: Designing triazatruxene-based donor materials with promising photovoltaic parameters for organic solar cells. RSC Adv. 9(45), 26402–26418 (2019d)

    Google Scholar 

  • Koehler, M., Santos, M., Da Luz, M.: Positional disorder enhancement of exciton dissociation at donor/acceptor interface. J. Appl. Phys. 99(5), 053702 (2006)

    ADS  Google Scholar 

  • Köse, M.E.: Evaluation of acceptor strength in thiophene coupled donor–acceptor chromophores for optimal design of organic photovoltaic materials. J. Phys. Chem. A 116(51), 12503–12509 (2012)

    Google Scholar 

  • Koster, L., Mihailetchi, V., Blom, P.: Ultimate efficiency of polymer/fullerene bulk heterojunction solar cells. Appl. Phys. Lett. 88(9), 093511 (2006)

    ADS  Google Scholar 

  • Krebs, F.C.: Polymer solar cell modules prepared using roll-to-roll methods: knife-over-edge coating, slot-die coating and screen printing. Sol. Energy Mater. Sol. Cells 93(4), 465–475 (2009)

    Google Scholar 

  • Lee, C., Kang, H., Lee, W., Kim, T., Kim, K.H., Woo, H.Y., Wang, C., Kim, B.J.: High-performance all-polymer solar cells via side-chain engineering of the polymer acceptor: the importance of the polymer packing structure and the nanoscale blend morphology. Adv. Mater. 27(15), 2466–2471 (2015)

    Google Scholar 

  • Li, G., Zhu, R., Yang, Y.: Polymer solar cells. Nat. Photon. 6, 153 (2012)

    ADS  Google Scholar 

  • Li, S., Ye, L., Zhao, W., Zhang, S., Mukherjee, S., Ade, H., Hou, J.: Energy-level modulation of small-molecule electron acceptors to achieve over 12% efficiency in polymer solar cells. Adv. Mater. 28(42), 9423–9429 (2016)

    Google Scholar 

  • Li, S., Ye, L., Zhao, W., Zhang, S., Ade, H., Hou, J.: Significant influence of the methoxyl substitution position on optoelectronic properties and molecular packing of small-molecule electron acceptors for photovoltaic cells. Adv. Energy Mater. 7(17), 1700183 (2017)

    Google Scholar 

  • Li, S., Zhan, L., Liu, F., Ren, J., Shi, M., Li, C.Z., Russell, T.P., Chen, H.: An unfused-core-based nonfullerene acceptor enables high-efficiency organic solar cells with excellent morphological stability at high temperatures. Adv. Mater. 30(6), 1705208 (2018)

    Google Scholar 

  • Lin, Y., He, Q., Zhao, F., Huo, L., Mai, J., Lu, X., Su, C.-J., Li, T., Wang, J., Zhu, J.: A facile planar fused-ring electron acceptor for as-cast polymer solar cells with 8.71% efficiency. J. Am. Chem. Soc. 138(9), 2973–2976 (2016)

    Google Scholar 

  • Liu, Y., Zhang, Z., Feng, S., Li, M., Wu, L., Hou, R., Xu, X., Chen, X., Bo, Z.: Exploiting noncovalently conformational locking as a design strategy for high performance fused-ring electron acceptor used in polymer solar cells. J. Am. Chem. Soc. 139(9), 3356–3359 (2017)

    Google Scholar 

  • Marchiori, C., Koehler, M.: Dipole assisted exciton dissociation at conjugated polymer/fullerene photovoltaic interfaces: a molecular study using density functional theory calculations. Synth. Met. 160(7–8), 643–650 (2010)

    Google Scholar 

  • Mehboob, M.Y., Hussain, R., Khan, M.U., Adnan, M., Umar, A., Alvi, M.U., Ahmed, M., Khalid, M., Iqbal, J., Akhtar, M.N.: Designing N-phenylaniline-triazol configured donor materials with promising optoelectronic properties for high-efficiency solar cells. Comput. Theor. Chem. 1186, 112908 (2020)

    Google Scholar 

  • Meng, D., Sun, D., Zhong, C., Liu, T., Fan, B., Huo, L., Li, Y., Jiang, W., Choi, H., Kim, T.: High-performance solution-processed non-fullerene organic solar cells based on selenophene-containing perylene bisimide acceptor. J. Am. Chem. Soc. 138(1), 375–380 (2016)

    Google Scholar 

  • Nenashev, A., Wiemer, M., Jansson, F., Baranovskii, S.: Theory to exciton dissociation at the interface between a conjugated polymer and an electron acceptor. J. Non-Cryst. Solids 358(17), 2508–2511 (2012)

    ADS  Google Scholar 

  • Nielsen, C.B., Holliday, S., Chen, H.-Y., Cryer, S.J., McCulloch, I.: Non-fullerene electron acceptors for use in organic solar cells. Acc. Chem. Res. 48(11), 2803–2812 (2015)

    Google Scholar 

  • Sahraoui, B., Kityk, I., Hudhomme, P., Gorgues, A.: Temperature–pressure anomalies of electrooptic coefficients in C60–TTF derivatives. J. Phys. Chem. B 105(27), 6295–6299 (2001)

    Google Scholar 

  • Sartorio, C., Figà, V., Salice, P., Gragnato, D., Cataldo, S., Scopelliti, M., Improta, R., Menna, E., Pignataro, B.: Thiophene pyrenyl derivatives for the supramolecular processability of single-walled carbon nanotubes in thin film heterojunction. Synth. Met. 229, 7–15 (2017)

    Google Scholar 

  • Scharber, M.C., Mühlbacher, D., Koppe, M., Denk, P., Waldauf, C., Heeger, A.J., Brabec, C.J.: Design rules for donors in bulk-heterojunction solar cells—towards 10% energy-conversion efficiency. Adv. Mater. 18(6), 789–794 (2006)

    Google Scholar 

  • Shehzad, R.A., Iqbal, J., Khan, M.U., Hussain, R., Javed, H.M.A., Rehman, A.U., Alvi, M.U., Khalid, M.: Designing of benzothiazole based non-fullerene acceptor (NFA) molecules for highly efficient organic solar cells. Comput. Theor. Chem. 1181, 112833 (2020)

    Google Scholar 

  • Silva, P.S.P., El Ouazzani, H., Pranaitis, M., Silva, M.R., Arranja, C.T., Sobral, A.J., Sahraoui, B., Paixão, J.A.: Experimental and theoretical studies of the second-and third-order NLO properties of a semi-organic compound: 6-aminoquinolinium iodide monohydrate. Chem. Phys. 428, 67–74 (2014)

    Google Scholar 

  • Takacs, C.J., Sun, Y., Welch, G.C., Perez, L.A., Liu, X., Wen, W., Bazan, G.C., Heeger, A.J.: Solar cell efficiency, self-assembly, and dipole–dipole interactions of isomorphic narrow-band-gap molecules. J. Am. Chem. Soc. 134(40), 16597–16606 (2012)

    Google Scholar 

  • Takimiya, K., Osaka, I., Mori, T., Nakano, M.: Organic semiconductors based on [1]benzothieno[3,2-b][1]benzothiophene substructure. Acc. Chem. Res. 47(5), 1493–1502 (2014)

    Google Scholar 

  • Tang, S., Zhang, J.: Design of donors with broad absorption regions and suitable frontier molecular orbitals to match typical acceptors via substitution on oligo (thienylenevinylene) toward solar cells. J. Comput. Chem. 33(15), 1353–1363 (2012)

    Google Scholar 

  • Yanai, T., Tew, D.P., Handy, N.C.: A new hybrid exchange–correlation functional using the Coulomb-attenuating method (CAM-B3LYP). Chem. Phys. Lett. 393(1–3), 51–57 (2004)

    ADS  Google Scholar 

  • Yao, H., Cui, Y., Yu, R., Gao, B., Zhang, H., Hou, J.: Design, synthesis, and photovoltaic characterization of a small molecular acceptor with an ultra-narrow band gap. Angew. Chem. Int. Ed. 56(11), 3045–3049 (2017)

    Google Scholar 

  • Zhang, J., Zhang, Y., Fang, J., Lu, K., Wang, Z., Ma, W., Wei, Z.: Conjugated polymer–small molecule alloy leads to high efficient ternary organic solar cells. J. Am. Chem. Soc. 137(25), 8176–8183 (2015a)

    Google Scholar 

  • Zhang, M., Guo, X., Ma, W., Ade, H., Hou, J.: A large-bandgap conjugated polymer for versatile photovoltaic applications with high performance. Adv. Mater. 27(31), 4655–4660 (2015b)

    Google Scholar 

  • Zhang, F., Inganäs, O., Zhou, Y., Vandewal, K.: Development of polymer–fullerene solar cells. Natl. Sci. Rev. 3(2), 222–239 (2016)

    Google Scholar 

  • Zhang, G., Zhang, K., Yin, Q., Jiang, X.-F., Wang, Z., Xin, J., Ma, W., Yan, H., Huang, F., Cao, Y.: High-performance ternary organic solar cell enabled by a thick active layer containing a liquid crystalline small molecule donor. J. Am. Chem. Soc. 139(6), 2387–2395 (2017)

    Google Scholar 

  • Zhao, J., Li, Y., Yang, G., Jiang, K., Lin, H., Ade, H., Ma, W., Yan, H.: Efficient organic solar cells processed from hydrocarbon solvents. Nat. Energy 1(2), 1–7 (2016)

    Google Scholar 

  • Zhao, W., Li, S., Yao, H., Zhang, S., Zhang, Y., Yang, B., Hou, J.: Molecular optimization enables over 13% efficiency in organic solar cells. J. Am. Chem. Soc. 139(21), 7148–7151 (2017)

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge the technical support provided by the Department of Chemistry, University of Okara, Okara-56300, Pakistan.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Riaz Hussain or Muhammad Usman Khan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Associated content

Optimized Cartesian coordinates of our studied compounds are available in supporting information file.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 43 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hussain, R., Hassan, F., Khan, M.U. et al. Molecular engineering of A–D–C–D–A configured small molecular acceptors (SMAs) with promising photovoltaic properties for high-efficiency fullerene-free organic solar cells. Opt Quant Electron 52, 364 (2020). https://doi.org/10.1007/s11082-020-02482-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11082-020-02482-7

Keywords

Navigation