Skip to main content

Advertisement

Log in

Combined effects of pitch angle, rotational speed and site wind distribution in small HAWT performance

  • Technical Paper
  • Published:
Journal of the Brazilian Society of Mechanical Sciences and Engineering Aims and scope Submit manuscript

Abstract

Constant speed horizontal axis wind turbines operate at power coefficients different than its maximum due to operation at different tip speed ratios (TSRs). Whereas rotational speed and the site wind speed distribution determine the TSR range of the operation, the pitch angle is significant for the aerodynamic performance of the wind turbine. In this paper, a blade element momentum approach is used to study the power production effects of pitch angle and rotational speed of NREL Phase VI wind turbine at different site wind distributions (characterized by Weibull distributions). It is shown that the best combination of rotational speed and pitch angle always occurs at the same pitch angle, but for different rotational speeds (other than the best one) the best pitch angle may vary. The best rotational speed is found to be dependent on both form and scale factors of Weibull wind speed distribution. Improvements in turbine pitch angle and rotational speed are found to increase generated energy up to four times, but the increasing factor is highly dependent on wind speed distribution: For the studied turbine, high-wind-speeds sites can benefit more from the adjustment of these parameters than low-speed ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

\(B\) :

Number of blades (–)

\(R\) :

Turbine total radius (m)

\(R_{\text{hub}}\) :

Hub radius (m)

\(r\) :

Radial position (m)

\(V_{0}\) :

Wind speed \(({\text{m/s}})\)

\(C\) :

Weibull scale parameter \(({\text{m/s}})\)

\(k\) :

Weibull form factor (–)

\(V_{0}\) :

Average wind speed \(({\text{m/s}})\)

\({\text{AEP}}\) :

Annual energy production \(\left( {\text{kJ}} \right)\)

\({\text{TSR}}\) :

Tip speed ratio (–)

\(P\) :

Shaft power \(\left( {\text{kW}} \right)\)

\(C_{\text{p}}\) :

Power coefficient (–)

\(a\) :

Axial induction factor (–)

\(a '\) :

Tangential induction factor (–)

\(c\) :

Chord (m)

\(C_{\text{N}}\) :

Normal force coefficient (–)

\(C_{\text{T}}\) :

Tangential force coefficient (–)

\(c_{\text{L}}\) :

Lift coefficient (–)

\(c_{\text{D}}\) :

Drag coefficient (–)

\({\text{Ns}}\) :

Number of section for BEM method (–)

\({\text{WED}}\) :

Wind energy density \(\left( {{\text{MWh}}\;{\text{m}}^{ - 2} \;{\text{year}}^{ - 1} } \right)\)

\({\text{ECC}}\) :

Energy conversion coefficient (–)

\(\beta\) :

Pitch angle (°)

\(\varGamma\) :

Gamma function

\(\omega\) :

Turbine rotational speed \(\left( {\text{rad/s}} \right)\)

\(\phi\) :

Local flow angle (°)

\(\sigma\) :

Solidity (–)

\(\rho\) :

Air density \(({\text{kg/m}}^{3} )\)

References

  1. WMO (2017) Greenhouse gas bulletin. World Meteorological Organization, Geneva

    Google Scholar 

  2. Duan H (2017) Emissions and temperature benefits: the role of wind power in China. Environ Res 152:342–350

    Google Scholar 

  3. Jacobson MZ, Archer CL (2012) Saturation wind power potential and its implications for wind energy. Proc Natl Acad Sci USA 39:15679–15684

    Google Scholar 

  4. IPCC (2014) Climate change 2014: mitigation of climate change. Cambridge University Press, New York

    Google Scholar 

  5. REN21 (2018) Renewables 2018 global status report. REN21 Secretariat, Paris

  6. Tummala A, Velamati RK, Sinha DK, Indraja V, Krishna VH (2016) A review on small scale wind turbines. Renew Sustain Energy Rev 56:1351–1371

    Google Scholar 

  7. MacPhee DW, Beyene A (2019) Performance analysis of a small wind turbine equipped with flexible blades. Renew Energy 132:497–508

    Google Scholar 

  8. Yin X, Zhang W, Zhao X (2019) Current status and future prospects of continuously variable speed wind turbines: a systematic review. Mech Syst Signal Process 120:326–340

    Google Scholar 

  9. Bukala J, Damaziak K, Kroszczynski K, Krzeszowiec M (2015) Investigation of parameters influencing the efficiency of small wind turbines. J Wind Eng Ind Aerodyn 146:29–38

    Google Scholar 

  10. Battisti L, Benini E, Brighenti A, Dell’Anna S, Castelli MR (2018) Small wind turbine effectiveness in the urban environment. Renew Energy 129:102–113

    Google Scholar 

  11. Tadamasa A, Zangeneh M (2011) Numerical prediction of wind turbine noise. Renew Energy 36:1902–1912

    Google Scholar 

  12. Cho T, Kim C (2014) Wind tunnel test for the NREL phase VI rotor with 2 m diameter. Renew Energy 65:265–274

    Google Scholar 

  13. Lee K, Huque Z, Kommalapati R, Han S-E (2017) Fluid-structure interaction analysis of NREL phase VI wind turbine: aerodynamic force evaluation and structural analysis using FSI analysis. Renew Energy 2017:512–531

    Google Scholar 

  14. Hu L, Zhu X, Chen J, Shen X, Du Z (2018) Numerical simulation of rime ice on NREL Phase VI blade. J Wind Eng Ind Aerodyn 178:57–68

    Google Scholar 

  15. Menegozzo L, Monte AD, Benini E, Benato A (2018) Small wind turbines: a numerical study for aerodynamic performance assessment under gust conditions. Renew Energy 121:123–132

    Google Scholar 

  16. Maizi M, Mohamed M, Dizene R, Mihoubi M (2018) Noise reduction of a horizontal wind turbine using different blade shapes. Renew Energy 117:242–256

    Google Scholar 

  17. Sudhamshu AR, Pandey MC, Nivedh Sunil SN, Mugundhan V, Velamati RK (2016) Numerical study of effect of pitch angle on performance characteristics of a HAWT. Eng Sci Technol Int J 19:632–641

    Google Scholar 

  18. Ansari M, Nobari M, Amani E (2019) Determination of pitch angles and wind speeds ranges to improve. Renew Energy 140:957–969

    Google Scholar 

  19. Rocha PC, Araujo JCD, Lima RP, Silva MVD, Albiero D, Andrade CD, Carneiro F (2018) The effects of blade pitch angle on the performance of small-scale wind turbine in urban environments. Energy 148:169–178

    Google Scholar 

  20. Sharifi A, Nobari M (2013) Prediction of optimum section pitch angle distribution along wind turbine blades. Energy Convers Manag 67:342–350

    Google Scholar 

  21. Lanzafame R, Messina M (2010) Horizontal axis wind turbine working at maximum power coefficient continuously. Renew Energy 35:301–306

    Google Scholar 

  22. Hand M, Simms D, Fingersh L, Jager D, Cotrell J, Schreck S, Larwood S (2001) Unsteady aerodynamics experiment phase VI: wind tunnel test configurations and available data campaigns. National Renewable Energy Laboratory, Golden

    Google Scholar 

  23. Mohammadi K, Alavi O, Mostafaeipour A, Goudarzi N, Jalilvand M (2016) Assessing different parameters estimation methods of Weibull distribution to compute wind power density. Energy Convers Manag 108:322–335

    Google Scholar 

  24. Kantar YM, Usta I (2015) Analysis of the upper-truncated Weibull distribution for wind speed. Energy Convers Manag 96:81–88

    Google Scholar 

  25. Wais P (2017) A review of Weibull functions in wind sector. Renew Sustain Energy Rev 70:1099–1107

    Google Scholar 

  26. Azad K, Rasul M, Halder P, Sutariyaa J (2019) Assessment of wind energy prospect by weibull distribution for prospective wind sites in Australia. Energy Procedia 160:348–355

    Google Scholar 

  27. Aririguzo JC, Ekwe EB (2019) Weibull distribution analysis of wind energy prospect for Umudike, Nigeria for power generation. Robot Comput Integr Manuf 55:160–163

    Google Scholar 

  28. Baseer M, Meyer J, Rehman S, Alam MM (2017) Wind power characteristics of seven data collection sites in Jubail. Renew Energy 102:35–49

    Google Scholar 

  29. Bidaouia H, Abbassi IE, Bouardi AE, Darcherif A (2019) Wind speed data analysis using weibull and rayleigh distribution functions, case study: five cities Northern Morocco. Procedia Manuf 32:786–793

    Google Scholar 

  30. Chaurasiya PK, Siraj Ahmed VW (2018) Study of different parameters estimation methods of Weibull distribution to determine wind power density using ground based Doppler SODAR instrument. Alexandria Eng J 57:2299–2311

    Google Scholar 

  31. Dahbi M, Benatiallah A, Sellam M (2013) The analysis of wind power potential in Sahara site of Algeria—an estimation using the ‘Weibull’ density function. Energy Procedia 36:179–188

    Google Scholar 

  32. Katinas V, Marciukaitis M, Gecevicius G, Markevicius A (2017) Statistical analysis of wind characteristics based on Weibull methods for estimation of power generation in Lithuania. Renew Energy 113:190–201

    Google Scholar 

  33. Ozay C, Celiktas MS (2016) Statistical analysis of wind speed using two-parameter Weibull distribution in Alaçatı region. Energy Convers Manag 121:49–54

    Google Scholar 

  34. Usta I, Arikb I, Yenilmeza I, Kantara YM (2018) A new estimation approach based on moments for estimating Weibull parameters in wind power applications. Energy Convers Manag 164:570–578

    Google Scholar 

  35. Weisser D (2003) Wind energy analysis of Grenada: an estimation using the ‘Weibull’ density function. Renew Energy 28:1803–1812

    Google Scholar 

  36. Hosseinalizadeh R, Rafiei ES, Alavijeh AS, Ghaderi SF (2017) Economic analysis of small wind turbines in residential energy sector in Iran. Sustain Energy Technol Assess 2017:58–71

    Google Scholar 

  37. Hansen MOL (2008) Aerodynamics of wind turbines. Earthscan, London

    Google Scholar 

  38. Lindenburg C (2003) Investigation into rotor blade aerodynamics: analysis of the stationary measurements on the UAE phase-VI rotor in the NASA-Ames wind tunnel. Energy Research Centre of the Netherlands, Petten

    Google Scholar 

  39. Lanzafame R, Messina M (2012) BEM theory: how to take into account the radial flow inside of a 1-D numerical code. Renew Energy 39:440–446

    Google Scholar 

  40. Dorio DATD, Mesquita ALA, Vaz JRP, Blanco CJC, Pinho JT (2014) An extension of the blade element momentum method applied to diffuser augmented wind turbines. Energy Convers Manag 87:1116–1123

    Google Scholar 

  41. El khchine Y, Sriti M (2017) Tip loss factor on aerodynamic performances of horizontal axis wind turbine. Energy Procedia 118:136–140

    Google Scholar 

  42. Sun Z, Shen WZ, Chen J, Zhu WJ (2017) Improved fixed point iterative method for blade element. Wind Energy 20:1585–1600

    Google Scholar 

  43. Burton T, Sharpe D, Jenkins N, Bossanyi E (2001) Wind energy handbook. Wiley, West Sussex

    Google Scholar 

  44. Cho T, Kim C, Lee D (2010) Acoustic measurement for 12% scaled model of NREL Phase VI wind turbine. Curr Appl Phys 10:S320–S325

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Turan Dias Oliveira.

Additional information

Technical Editor: Erick Franklin, Ph.D.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

figure a
figure b
figure c
figure d

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Oliveira, T.D., Tofaneli, L.A. & Santos, A.Á.B. Combined effects of pitch angle, rotational speed and site wind distribution in small HAWT performance. J Braz. Soc. Mech. Sci. Eng. 42, 425 (2020). https://doi.org/10.1007/s40430-020-02501-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s40430-020-02501-4

Keywords

Navigation