Skip to main content
Log in

The Status of Thermodynamic Data and Models for CF\(_3\)I and its Mixtures

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

There is a renewed interest in the use of the refrigerant CF\(_3\)I for refrigeration and air-conditioning applications, driven by its low global warming potential (similar to that of CO\(_2\)), low (but nonzero) ozone depletion potential, and its ability to suppress flammability. In this paper, the existing thermodynamic data for this fluid are summarized. Furthermore, as CF\(_3\)I has been proposed as a component in mixtures with other refrigerants, the emphasis of this paper is on the survey of existing mixture data and an assessment of the suitability of existing thermodynamic modeling approaches and estimation schemes to model the properties of these mixtures. For mixtures where sufficient data exist, interaction parameters have been optimized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Notes

  1. This oversight had its origins in the use of the fluid name R1234ZE for R-1234ze(E) in REFPROP 9.1, which was corrected to R1234ZEE in REFPROP 10.0.

References

  1. ASHRAE Addendum t to ANSI/ASHRAE Standard 34-2019 Designation and Safety Classification of Refrigerants. (2019a)

  2. ASHRAE Addendum u to ANSI/ASHRAE Standard 34-2019 Designation and Safety Classification of Refrigerants. (2019b)

  3. ASHRAE ANSI/ASHRAE Standard 34-2019 Designation and Safety Classification of Refrigerants. (2019c)

  4. I.H. Bell, U.K. Deiters, On the construction of binary mixture \(p\)-\(x\) and \(T\)-\(x\) diagrams from isochoric thermodynamics. AIChE J. 64, 2745–2757 (2018). https://doi.org/10.1002/aic.16074

    Article  Google Scholar 

  5. I.H. Bell, E.W. Lemmon, Automatic fitting of binary interaction parameters for multi-fluid Helmholtz-energy-explicit mixture Models. J. Chem. Eng. Data 61, 3752–3760 (2016). https://doi.org/10.1021/acs.jced.6b00257

    Article  Google Scholar 

  6. I.H. Bell, J. Wronski, S. Quoilin, V. Lemort, Pure and pseudo-pure fluid thermophysical property evaluation and the open-source thermophysical Property Library CoolProp. Ind. Eng. Chem. Res. 53, 2498–2508 (2014). https://doi.org/10.1021/ie4033999

    Article  Google Scholar 

  7. L. Calderazzi, P. Colonna di Paliano, Thermal stability of R-134a, R-141b, R-13I1, R-7146, R-125 associated with stainless steel as a containing material. Int. J. Refrig. 20, 381–389 (1997). https://doi.org/10.1016/s0140-7007(97)00043-1

    Article  Google Scholar 

  8. J. Calm, G.C. Hourahan, Refrigerant data update. HPAC Engineering 79, 50–64 (2007)

    Google Scholar 

  9. B. Dlugogorski, R. Hichens, E. Kennedy, Inert hydrocarbon-based refrigerants. Fire Saf. J. 37, 53–65 (2002). https://doi.org/10.1016/s0379-7112(01)00023-6

    Article  Google Scholar 

  10. X. Dong, M. Gong, J. Wu, Phase equilibrium for the binary azeotropic mixture of trifluoroiodomethane (R13I1) + 1,1,2,2-tetrafluoroethane (R134) at temperatures from 258.150 to 283.150 K. Fluid Phase Equilib. 315, 35–39 (2012). https://doi.org/10.1016/j.fluid.2011.11.013

    Article  Google Scholar 

  11. Y.Y. Duan, M.S. Zhu, L.Z. Han, Experimental vapor pressure data and a vapor pressure equation for trifluoroiodomethane (CF3I). Fluid Phase Equilib. 121, 227–234 (1996). https://doi.org/10.1016/0378-3812(96)03005-1

    Article  Google Scholar 

  12. Y.Y. Duan, L.Q. Sun, L. Shi, M.S. Zhu, L.Z. Han, Speed of sound and ideal-gas heat capacity at constant pressure of gaseous trifluoroiodomethane (CF3I). Fluid Phase Equilib. 137, 121–131 (1997). https://doi.org/10.1016/s0378-3812(97)00152-0

    Article  Google Scholar 

  13. Y.Y. Duan, L. Shi, M.S. Zhu, L.Z. Han, Critical parameters and saturated density of trifluoroiodomethane (CF3I). J. Chem. Eng. Data 44, 501–504 (1999). https://doi.org/10.1021/je980251b

    Article  Google Scholar 

  14. J. Gernert, R. Span, EOS-CG: a Helmholtz energy mixture model for humid gases and CCS mixtures. J. Chem. Thermodyn. 93, 274–293 (2016). https://doi.org/10.1016/j.jct.2015.05.015

    Article  Google Scholar 

  15. M. Gong, H. Guo, X. Dong, H. Li, J. Wu, (Vapor + liquid) phase equilibrium measurements for (trifluoroiodomethane (R13I1) + propane (R290)) from T = (258.150 to 283.150) K. J. Chem. Thermodyn. 79, 167–170 (2014). https://doi.org/10.1016/j.jct.2014.07.013

    Article  Google Scholar 

  16. M. Gong, K. Cheng, X. Dong, H. Guo, Y. Zhao, J. Wu, Measurements of isothermal (vapor + liquid) phase equilibrium for (trifluoroiodomethane (R13I1) + 1,1-difluoroethane (R152a)) from T = (258.150 to 283.150) K. J. Chem. Thermodyn. 88, 90–95 (2015). https://doi.org/10.1016/j.jct.2015.04.011

    Article  Google Scholar 

  17. H. Guo, M. Gong, X. Dong, J. Wu, (Vapour + liquid) equilibrium data for the binary system of (trifluoroiodomethane (R13I1) + trans-1, 3, 3, 3-tetrafluoropropene (R1234ze(E))) at various temperatures from (258.150 to 298.150) K. J. Chem. Thermodyn. 47, 397–401 (2012). https://doi.org/10.1016/j.jct.2011.11.024

    Article  Google Scholar 

  18. H. Guo, M. Gong, X. Dong, J. Wu, Measurements of (vapour + liquid) equilibrium data for (trifluoroiodomethane (R13I1) + isobutane (R600a)) at temperatures between (263.150 and 293.150) K. J. Chem. Thermodyn. 58, 428–431 (2013). https://doi.org/10.1016/j.jct.2012.10.003

    Article  Google Scholar 

  19. M.D. Hanwell, D.E. Curtis, D.C. Lonie, T. Vandermeersch, E. Zurek, G.R. Hutchison, Avogadro: an advanced semantic chemical editor, visualization, and analysis platform. J. Cheminf. 4, 17 (2012). https://doi.org/10.1186/1758-2946-4-17

    Article  Google Scholar 

  20. J. Klomfar, M. Souckova, J. Patek, Isochoric \(p\)-\(\rho\)-\(T\) measurements for trans-1,3,3,3-tetrafluoropropene [R-1234ze(E)] and trifluoroiodomethane (R13I1) at temperatures from (205 to 353) K under pressures up to 40 MPa. J. Chem. Eng. Data. 57, 3270–3277 (2012). https://doi.org/10.1021/je3008974

    Article  Google Scholar 

  21. O. Kunz, W. Wagner, The GERG-2008 wide-range equation of state for natural gases and other mixtures: an expansion of GERG-2004. J. Chem. Eng. Data 57, 3032–3091 (2012). https://doi.org/10.1021/je300655b

    Article  Google Scholar 

  22. O. Kunz, R. Klimeck, W. Wagner, M. Jaeschke, The GERG-2004 Wide-Range Equation of State for Natural Gases and Other Mixtures. VDI Verlag GmbH (2007)

  23. E.W. Lemmon, R. Span, Thermodynamic properties of R-227ea, R-365mfc, R-115, and R-13I1. J. Chem. Eng. Data 60, 3745–3758 (2015). https://doi.org/10.1021/acs.jced.5b00684

    Article  Google Scholar 

  24. E.W. Lemmon, I.H. Bell, M.L. Huber, M.O. McLinden, NIST Standard Reference Database 23: Reference Fluid Thermodynamic and Transport Properties-REFPROP, Version 10.0, National Institute of Standards and Technology. (2018). http://www.nist.gov/srd/nist23.cfm

  25. J.S. Lim, J.D. Kim, Vapor–liquid equilibria of the binary systems nitrogen + bromotrifluoromethane, + bromochlorodifluoromethane, + 1,1,1,2,3,3,3-heptafluoropropane, and + trifluoroiodomethane from 293.2 to 313.2 K and 30 to 100 bar. J. Chem. Eng. Data 42, 112–115 (1997). https://doi.org/10.1021/je960239o

    Article  Google Scholar 

  26. G.T. Linteris, I.H. Bell, M.O. McLinden, An empirical model for refrigerant flammability based on molecular structure and thermodynamics. Int. J. Refrig. 104, 144–150 (2019). https://doi.org/10.1016/j.ijrefrig.2019.05.006

    Article  Google Scholar 

  27. M. McLinden, M. Huber, (R)Evolution of refrigerants. J. Chem. Eng. Data. (2020). https://doi.org/10.1021/acs.jced.0c00338

    Article  Google Scholar 

  28. NAS, Iodotrifluoromethane: Toxicity Review (National Academies Press, Washington, DC, 2004)

    Google Scholar 

  29. S. Solomon, J.B. Burkholder, A.R. Ravishankara, R.R. Garcia, Ozone depletion and global warming potentials of CF3I. J. Geophys. Res. 99, 20929 (1994). https://doi.org/10.1029/94jd01833

    Article  ADS  Google Scholar 

  30. R. Span, R. Beckmüller, T. Eckermann, S. Herrig, S. Hielscher, A. Jäger , E. Mickoleit, T. Neumann, S. Pohl, B. Semrau, M. Thol, TREND. Thermodynamic Reference and Engineering Data 4.0. (2019). http://www.thermo.ruhr-uni-bochum.de/

  31. J. Tkaczuk, I.H. Bell, E.W. Lemmon, N. Luchier, F. Millet, Equations of state for the thermodynamic properties of binary mixtures for helium-4, neon, and argon. J. Phys. Chem. Ref. Data 49, 023101 (2020). https://doi.org/10.1063/1.5142275

    Article  Google Scholar 

  32. E.A. Ural, Flammability potential of halogenated fire suppression agents and refrigerants. Process Saf. Prog. 22, 65–73 (2003). https://doi.org/10.1002/prs.680220109

    Article  Google Scholar 

  33. A. Vinegar, G.W. Jepson, M. Cisneros, R. Rubenstein, W.J. Brock, Setting safe acute exposure limits for halon replacement chemicals using physiologically based pharmacokinetic modeling. Inhalation Toxicol. 12, 751–763 (2000). https://doi.org/10.1080/08958370050085174

    Article  Google Scholar 

  34. DP. Wilson, RH. Thomas, RR. Singh, Stabilized Trifluoroiodomethane Compositions–US patent 20060033072A1. (2006)

  35. WMO, Scientific Assessment of Ozone Depletion: 2018, Global Ozone Research and Monitoring Project–Report No. 58. WMO (World Meteorological Organization), Geneva, Switzerland (2018)

  36. D.J. Wuebbles, Weighing functions for ozone depletion and greenhouse gas effects on climate. Annu. Rev. Energy Environ. 20, 45–70 (1995). https://doi.org/10.1146/annurev.eg.20.110195.000401

    Article  Google Scholar 

  37. J. Yang, I. Vázquez, C. Boyer, M. Huber, L. Weber, Measured and predicted thermodynamic properties of selected halon alternative/nitrogen mixtures. Int. J. Refrig. 20, 96–105 (1997). https://doi.org/10.1016/s0140-7007(96)00070-9

    Article  Google Scholar 

  38. Z. Yang, H. Liu, X. Wu, Theoretical and experimental study of the inhibition and inert effect of HFC125, HFC227ea and HFC13I1 on the flammability of HFC32. Process Saf. Environ. Protect. 90, 311–316 (2012). https://doi.org/10.1016/j.psep.2011.09.009

    Article  Google Scholar 

  39. Z. Yang, X. Wu, X. Wang, T. Tian, Research on the flammable characteristics of fluoroethane (R161) and its binary blends. Int. J. Refrig. 56, 235–245 (2015). https://doi.org/10.1016/j.ijrefrig.2015.03.020

    Article  Google Scholar 

  40. Z. Yuan, Y. Tu, C. Wang, Y. Zhao, X. Dong, Experimental research on (vapor + liquid) equilibria for the (trifluoroiodomethane (CF3I) + carbon dioxide (CO2)) system from 243.150 to 273.150 K. J. Chem. Thermodyn. 101, 49–53 (2016). https://doi.org/10.1016/j.jct.2016.05.012

    Article  Google Scholar 

  41. C. Zhang, Y. Duan, L. Shi, M. Zhu, L. Han, Experimental study on vapor pressure for CF\(_3\)I. Qinghua Daxue Xuebao, Ziran Kexueban 40, 77–79 (2000)

    Google Scholar 

  42. J. Zhang, D.J. Wuebbles, D.E. Kinnison, A. Saiz-Lopez, Revising the ozone depletion potentials metric for short-lived chemicals such as CF\(_3\)I and CH\(_3\)I. J. Geo. Res. Atmos. 125, e2020JD032414 (2020). https://doi.org/10.1029/2020jd032414

    Article  ADS  Google Scholar 

  43. H. Zhao, X. Li, H. Lin, Insulation characteristics of c-C\(_4\)F\(_8\)-N\(_2\) and CF\(_3\)I-N\(_2\) mixtures as possible substitutes for SF\(_6\). IEEE Trans. Power Deliv. 32, 254–262 (2017). https://doi.org/10.1109/tpwrd.2016.2587898

    Article  Google Scholar 

Download references

Acknowledgments

The authors thank the NIST ThermoDataEngine team for their tireless efforts. This work was partially supported by the U.S. Department of Defense, Strategic Environmental Research and Development Program (SERDP), project WP 19-F3-1385, whose support is appreciated.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ian H. Bell.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bell, I.H., McLinden, M.O. The Status of Thermodynamic Data and Models for CF\(_3\)I and its Mixtures. Int J Thermophys 41, 134 (2020). https://doi.org/10.1007/s10765-020-02712-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02712-w

Keywords

Navigation