Skip to main content
Log in

Enhanced Thermoelectric Performances Driven by High-Pressure Phase Transition of Mg2Sn Compound

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

The ground state properties of the Mg2Sn compound under seven different crystal structures were studied using a first principles approach based on the full-potential augmented plane wave method FP-LAPW within the GGA-PBEsol approximation. We fixed the cubic structure of CaF2-type as zero pressure phase and we have considered the orthorhombic PbCl2-type, hexagonal Ni2In-type, tetragonal Al2Cu-type, cubic MgCu2-type, hexagonal MgZn2-type and dihexagonal MgNi2-type as candidates structures for the high-pressure phases. We used Gibbs’ equation to examine these high-pressure structures and compare their enthalpies. Thus, it appears that the Mg2Sn compound undergoes three pressure-induced phase transitions. First, it is a transition from the CaF2-type cubic structure to the orthorhombic PbCl2-type structure; second, the transition from the PbCl2-type structure to the hexagonal Ni2In-type structure; and third, the transition will take place toward the cubic structure MgCu2-type which should be stable. In addition, to further examine the thermoelectric performances of each stable phase, we combined the results calculated for the electronic properties by the TB-mBJ approximation with the semi-classical Boltzmann theory using the BoltzTraP code. Our key result is that Mg2Sn compound with cubic MgCu2-type structure has a high value of figure of merit (ZTe) compared to the cubic CaF2-type structure, which could promise it as an excellent candidate for potential thermoelectric applications at high pressure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. M. Guezlane, H. Baaziz, Z. Charifi, A. Belgacem-Bouzida, Y. Djaballah, A study of the phase transitions, electronic structures and thermodynamic properties of Mg2X (X = Ge, Si and Sn) under high pressure. Adv. Mater. Devices. 2, 105–114 (2017)

    Article  Google Scholar 

  2. V.K. Zaitsev, M.I. Fedorov, E.A. Gurieva, I.S. Eremin, P.P. Konstantinov, Highly effective Mg2Si1−xSnx thermoelectrics. Phys. Rev. B 74, 045207 (2006)

    Article  ADS  Google Scholar 

  3. G. Murtaza, A. Sajid, M. Rizwan, Y. Takagiwa, H. Khachai, M. Jibran, R. Khenata, S.B. Omran, First principles study of Mg2X (X = Si, Ge, Sn, Pb): elastic, optoelectronic and thermoelectric properties. Mater. Sci. Semicond. Process. 40, 429 (2015)

    Article  Google Scholar 

  4. S. Bose, H.N. Acharya, H.D. Banerjee, Electrocal, thermal, thermoelectric and related properties of magnesium silicide semiconductor prepared from rice husk. J. Mater. Sci. 28, 5461–5468 (1993)

    Article  ADS  Google Scholar 

  5. M. Yang, W. Luo, Q. Shen, H. Jiang, L. Zhang, Preparation and thermoelectric properties of Bi-doped Mg2Si nanocomposites. Adv. Mater. Res. 66, 17 (2009)

    Article  Google Scholar 

  6. U. Winkler, Electrical properties of intermetallic compounds Mg2Si, Mg2Ge, Mg2Sn and Mg2P. Helv. Phys. Acta 28, 633–666 (1955)

    Google Scholar 

  7. S. Kessair, O. Arbouche, K. Amara et al., First principles prediction of a new high-pressure phase and transport properties of Mg2Si. Indian J. Phys. 90, 1403–1415 (2016)

    Article  ADS  Google Scholar 

  8. F. Yu, J.X. Sun, T.H. Chen, High-pressure phase transitions of Mg2Ge and Mg2Sn: first-principles calculations. Phys. B 406, 1789–1794 (2011)

    Article  ADS  Google Scholar 

  9. S.D. Guo, Pressure-induced semiconductor-to-metal transition in Mg2Sn with the modified Becke-Johnson potential. EPL 109, 57002 (2015)

    Article  ADS  Google Scholar 

  10. J.B. Friauf, The crystal structures of two intermetallic compounds. J. Am. Chem. Soc. 49, 3107–3114 (1927)

    Article  Google Scholar 

  11. J.B. Friauf, The crystal structure of magnesium di-zincide. Phys. Rev. 29, 34 (1927)

    Article  ADS  Google Scholar 

  12. T. Massalski, H. Okamoto, P. Subramanian, L. Kacprzak (Eds.), 2nd edn. American Society for Metals, Metals Park, OH (1990)

  13. W. Hume-Rothery, The Structure of Metals and Alloys, 3rd edn. (Institute of Metals Monographs and Report Series, London, 1954)

    MATH  Google Scholar 

  14. K.M. Wong, S.M. Alay-e-Abbas, Y. Fang, A. Shaukat, Y. Lei, Spatial distribution of neutral oxygen vacancies on ZnO nanowire surfaces: an investigation combining confocal microscopy and first principles calculations. J. Appl. Phys. 114, 034901 (2013)

    Article  ADS  Google Scholar 

  15. P. Hohenberg, W. Kohn, Inhomogeneous electron gas. Phys. Rev. B 136, 864 (1964)

    Article  ADS  MathSciNet  Google Scholar 

  16. W. Kohn, L.J. Sham, Self-consistent equations including exchange and correlation effects. Phys. Rev. 140, A1133–A1138 (1965)

    Article  ADS  MathSciNet  Google Scholar 

  17. J.P. Perdew, A. Ruzsinszky, G.I. Csonka, O.A. Vydrov, G.E. Scuseria, L.A. Constantin, X. Zhou, K. Burke, Restoring the density-gradient expansion for exchange in solids and surfaces. Phys. Rev. Lett. 100, 136406 (2008)

    Article  ADS  Google Scholar 

  18. F. Tran, P. Blaha, M. Betzinger, S. Blügel, Accurate band gaps of semiconductors and insulators with a semilocal exchange-correlation potential. Phys. Rev. Lett. 102, 226401 (2009)

    Article  ADS  Google Scholar 

  19. G.G.K.H. Madsen, D.J. Singh, BoltzTraP. A code for calculating band-structure dependent quantities. Comput. Phys. Commun. 175, 67–71 (2006)

    Article  ADS  Google Scholar 

  20. G.K.H. Madsen, Automated search for new thermoelectric materials: the case of LiZnSb. J. Am. Chem. Soc. 128, 12140–12146 (2006)

    Article  Google Scholar 

  21. T.J. Scheidemantel, C. Ambrosch-Draxl, T. Thonhauser, J.V. Badding, J.O. Sofo, Transport coefficients from first-principles calculations. Phys. Rev. B 68, 125210 (2003)

    Article  ADS  Google Scholar 

  22. H. Gzyl, Integration of the boltzmann equation in the relaxation time approximation. J. Stat. Phys. 29, 617 (1982)

    Article  ADS  MathSciNet  Google Scholar 

  23. P. Blaha, K. Schwarz, G. K. H. Madsen, D. Kvasnicka, J. Luitz, R. Laskowsk, F. Tran, L. Marks, L. Marks. WIEN2k: an augmented plane wave plus local orbitals program for calculating crystal properties. Techn. Universitat (2019)

  24. A. Otero, D. Abbasi-Pérez, V. Luaña, GIBBS2: a new version of the quasiharmonic model code. II. Models for solid-state thermodynamics, features and implementation. Comput. Phys. Commun. 182, 2232–2248 (2011)

    Article  ADS  Google Scholar 

  25. H.J. Monkhorst, J.D. Pack, Special points for Brillouin-zone integrations. Phys. Rev. B 13, 5188–5192 (1976)

    Article  ADS  MathSciNet  Google Scholar 

  26. J.D. Pack, H.J. Monkhorst, “Special points for Brillouin-zone integrations”—a reply. Phys. Rev. 16, 1748–1749 (1977)

    Article  ADS  Google Scholar 

  27. C.R. Clark, C. Wright, C. Suryanarayana, E.G. Baburaj, F.H. Froes, Synthesis of Mg2X (X = Si, Ge, or Sn) intermetallics by mechanical alloying. Mater. Lett. 33, 71–75 (1997)

    Article  Google Scholar 

  28. F.D. Murnaghan, The Compressibility of Media under Extreme Pressures. Proc. Nat. Acad. Sci. USA 30, 244–247 (1944)

    Article  ADS  MathSciNet  Google Scholar 

  29. J.L. Corkill, M.L. Cohen, Structural, bonding, and electronic properties of IIA–IV antifluorite compounds. Phys. Rev. B 48, 17138 (1993)

    Article  ADS  Google Scholar 

  30. E. Anastassakis, J.P. Hawranek, Elastic constants of II–IV semiconductors. Phys. Rev. B 5, 4003 (1972)

    Article  ADS  Google Scholar 

  31. J.J. Martin, Thermal conductivity of Mg2Si, Mg2Ge and Mg2Sn. J. Phys. Chem. Solids 33, 1139–1148 (1972)

    Article  ADS  Google Scholar 

  32. E.N. Nikitin, V.G. Bazanov, V.I. Tarasov, Thermoelectric properties of Mg2Si–Mg2Sn solid solutions. Sov. Phys. Solid State. 3, 2648 (1961)

    Google Scholar 

  33. F. Yu, J.X. Sun, W. Yang, R.G. Tian, G.F. Ji, A study of the phase transitions, electronic structures and optical properties of Mg2Si under high pressure. Solid State Commun. 150, 620 (2010)

    Article  ADS  Google Scholar 

  34. N.F. Hinsche, I. Mertig, P. Zahn, Thermoelectric transport in strained Si and Si/Ge heterostructures. J. Phys. Condens. Matter 24, 275501 (2012)

    Article  Google Scholar 

  35. J.E. Mahan, A. Vantomme, G. Langouche, J.P. Becker, Semiconducting Mg2Si thin films prepared by molecular-beam epitaxy. Phys. Rev. B 54, 16965 (1996)

    Article  ADS  Google Scholar 

  36. K. Kondoh, H. Oginuma, A. Kimura, S. Matsukawa, T. Aizawa, In-situ synthesis of Mg2Si intermetallics via powder metallurgy process. Mater. Trans. 44, 981–985 (2003)

    Article  Google Scholar 

  37. B. Ryu, S. Park, E. Choi et al., Hybrid-functional and quasi-particle calculations of band structures of Mg2Si, Mg2Ge, and Mg2Sn. J. Korean Phys. Soc. 75, 144–152 (2019). https://doi.org/10.3938/jkps.75.144

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to O. Arbouche.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Almaghbash, Z.A.A.R., Arbouche, O., Cherifi, A. et al. Enhanced Thermoelectric Performances Driven by High-Pressure Phase Transition of Mg2Sn Compound. Int J Thermophys 41, 136 (2020). https://doi.org/10.1007/s10765-020-02715-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02715-7

Keywords

Navigation