Skip to main content
Log in

Reviewing Thermophysical Properties of Silk Fibers: A Case Study for the Need for Complementary Measurement Techniques

  • Published:
International Journal of Thermophysics Aims and scope Submit manuscript

Abstract

A recent interest in the mechanical properties of spider silk has also brought about investigations into the thermal properties of thin fibers, often with contradictory results. Because of the high length-to-diameter ratio of fibers, two key obstacles arise during their thermal characterization: the need to develop non-standard techniques to measure properties and the lack of reliable methods to confirm the validity of those measurements. This is especially important since standard reference materials are difficult or impossible to produce at these small scales. This paper presents a review on the thermal conductivity and diffusivity of spider dragline silk and how the use of a suite of measurement techniques that complement each other can bound the uncertainty of the measured property. The properties of silkworm silks are then presented as evidence of a field where complementary techniques could be applied to resolve property discrepancies. This complementary approach to validating novel techniques will increase the confidence in measured properties and will open new avenues of thermal science applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. G.A. Slack, J. Phys. Chem. Solids 34, 321 (1973)

    ADS  Google Scholar 

  2. L. Lindsay, D. Broido, T. Reinecke, Phys. Rev. Lett. 111, 025901 (2013)

    ADS  Google Scholar 

  3. T. Feng, L. Lindsay, X. Ruan, Phys. Rev. B 96, 161201 (2017)

    ADS  Google Scholar 

  4. F. Tian, B. Song, X. Chen, N.K. Ravichandran, Y. Lv, K. Chen, S. Sullivan, J. Kim, Y. Zhou, T.-H. Liu et al., Science 361, 582 (2018)

    ADS  Google Scholar 

  5. F. Tian, Z. Ren, Angew. Chem. 131, 5882 (2019)

    Google Scholar 

  6. S. U. S. Choi and J. A. Eastman, Enhancing Thermal Conductivity of Fluids with Nanoparticles (ANL/MSD/CP-84938 Argonne National Lab., IL (United States), 1995)

  7. J. Buongiorno, D.C. Venerus, N. Prabhat, T. McKrell, J. Townsend, R. Christianson, Y.V. Tolmachev, P. Keblinski, L. Hu, J.L. Alvarado, I.C. Bang, S.W. Bishnoi, M. Bonetti, F. Botz, A. Cecere, Y. Chang, G. Chen, H. Chen, S.J. Chung, M.K. Chyu, S.K. Das, R. Di Paola, Y. Ding, F. Dubois, G. Dzido, J. Eapen, W. Escher, D. Funfschilling, Q. Galand, J. Gao, P.E. Gharagozloo, K.E. Goodson, J.G. Gutierrez, H. Hong, M. Horton, K.S. Hwang, C.S. Iorio, S.P. Jang, A.B. Jarzebski, Y. Jiang, L. Jin, S. Kabelac, A. Kamath, M.A. Kedzierski, L.G. Kieng, C. Kim, J.-H. Kim, S. Kim, S.H. Lee, K.C. Leong, I. Manna, B. Michel, R. Ni, H.E. Patel, J. Philip, D. Poulikakos, C. Reynaud, R. Savino, P.K. Singh, P. Song, T. Sundararajan, E. Timofeeva, T. Tritcak, A.N. Turanov, S. Van Vaerenbergh, D. Wen, S. Witharana, C. Yang, W.-H. Yeh, X.-Z. Zhao, S.-Q. Zhou, J. Appl. Phys. 106, 094312 (2009)

    ADS  Google Scholar 

  8. M.J. Assael, W.A. Wakeham, Int. J. Thermophys. 40, 59 (2019)

    ADS  Google Scholar 

  9. M. Assael, M. Dix, K. Gialou, L. Vozar, W. Wakeham, Int. J. Thermophys. 23, 615 (2002)

    Google Scholar 

  10. W. Parker, R. Jenkins, C. Butler, G. Abbott, J. Appl. Phys. 32, 1679 (1961)

    ADS  Google Scholar 

  11. American Society for Testing and Materials, A. C177-13, in ASTM 04.06 (American Society for Testing and Materials, Philadelphia, 2004), p. 6

    Google Scholar 

  12. S.E. Gustafsson, Rev. Sci. Instrum. 62, 797 (1991)

    ADS  Google Scholar 

  13. J. Moon, K. Weaver, B. Feng, H. Gi Chae, S. Kumar, J.-B. Baek, G. Peterson, Rev. Sci. Instrum. 83, 016103 (2012)

    ADS  Google Scholar 

  14. X. Zhang, S. Fujiwara, M. Fujii, Int. J. Thermophys. 21, 965 (2000)

    Google Scholar 

  15. L. Lu, W. Yi, D. Zhang, Rev. Sci. Instrum. 72, 2996 (2001)

    ADS  Google Scholar 

  16. Q.-Y. Li, X. Zhang, Thermochim. Acta 581, 26 (2014)

    Google Scholar 

  17. J. Guo, X. Wang, L. Zhang, T. Wang, Appl. Phys. A 89, 153 (2007)

    Google Scholar 

  18. H. Lin, X. Liu, A. Kou, S. Xu, H. Dong, Int. J. Thermophys. 40, 108 (2019)

    ADS  Google Scholar 

  19. R. Chen, A.I. Hochbaum, P. Murphy, J. Moore, P. Yang, A. Majumdar, Phys. Rev. Lett. 101, 105501 (2008)

    ADS  Google Scholar 

  20. H. Wang, S. Hu, K. Takahashi, X. Zhang, H. Takamatsu, J. Chen, Nat. Commun. 8, 15843 (2017)

    ADS  Google Scholar 

  21. H. Maruyama, R. Kariya, F. Arai, Appl. Phys. Lett. 103, 161905 (2013)

    ADS  Google Scholar 

  22. J. Liu, H. Wang, Y. Hu, W. Ma, X. Zhang, Rev. Sci. Instrum. 86, 014901 (2015)

    ADS  Google Scholar 

  23. Q. Li, C. Liu, X. Wang, S. Fan, Nanotechnology 20, 145702 (2009)

    ADS  Google Scholar 

  24. X. Liu, H. Dong, Y. Li, N. Mei, Int. J. Thermophys. 38, 150 (2017)

    ADS  Google Scholar 

  25. R. Fuente, A. Mendioroz, A. Salazar, Mater. Lett. 114, 1 (2014)

    Google Scholar 

  26. L. Qiu, N. Zhu, Y. Feng, E.E. Michaelides, G. Żyła, D. Jing, X. Zhang, P.M. Norris, C.N. Markides, O. Mahian, Phys. Rep. 843, 1 (2020)

    ADS  Google Scholar 

  27. D. Porter, J. Guan, F. Vollrath, Adv. Mater. 25, 1275 (2012)

    Google Scholar 

  28. J.A. Jones, T.I. Harris, C.L. Tucker, K.R. Berg, S.Y. Christy, B.A. Day, D.A. Gaztambide, N.J. Needham, A.L. Ruben, P.F. Oliveira et al., Biomacromol 16, 1418 (2015)

    Google Scholar 

  29. R.S. Rengasamy, M. Jassal, C. Rameshkumar, AUTEX Res. J. 5, 30 (2005)

    Google Scholar 

  30. C.Y. Hayashi, N.H. Shipley, R.V. Lewis, Int. J. Biol. Macromol. 24, 271 (1999)

    Google Scholar 

  31. C.G. Copeland, B.E. Bell, C.D. Christensen, R.V. Lewis, A.C.S. Biomater, Sci. Eng. 1, 577 (2015)

    Google Scholar 

  32. R. Menassa, H. Zhu, C.N. Karatzas, A. Lazaris, A. Richman, J. Brandle, Plant Biotechnol. J. 2, 431 (2004)

    Google Scholar 

  33. S. Fahnestock, S. Irwin, Appl. Microbiol. Biotechnol. 47, 23 (1997)

    Google Scholar 

  34. F. Teulé, B. Addison, A.R. Cooper, J. Ayon, R.W. Henning, C.J. Benmore, G.P. Holland, J.L. Yarger, R.V. Lewis, Biopolymers 97, 418 (2012)

    Google Scholar 

  35. T. Munro, T. Putzeys, C. G. Copeland, C. Xing, R. V. Lewis, H. Ban, C. Glorieux, M. Wubbenhorst, Macromol. Mater. Eng. 302, (2017)

  36. X. Huang, G. Liu, X. Wang, Adv. Mater. 24, 1482 (2012)

    Google Scholar 

  37. S. Shen, A. Henry, J. Tong, R. Zheng, G. Chen, Nat. Nanotechnol. 5, 251 (2010)

    ADS  Google Scholar 

  38. J. Park, D. Kim, S.M. Lee, J.U. Choi, M. You, H.M. So, J. Han, J. Nah, J.H. Seol, Int. J. Biol. Macromol. 96, 384 (2017)

    Google Scholar 

  39. L. Zhang, T. Chen, H. Ban, L. Liu, Nanoscale 6, 7786 (2014)

    ADS  Google Scholar 

  40. S. Xu, Z. Xu, J. Starrett, C. Hayashi, X. Wang, Polymer 55, 1845 (2014)

    Google Scholar 

  41. C. Xing, T. Munro, B. White, H. Ban, C. Copeland, R. Lewis, Polymer 55, 4226 (2014)

    Google Scholar 

  42. C. Xing, T. Munro, C. Jensen, H. Ban, C.G. Copeland, R.V. Lewis, Mater. Des. 119, 22 (2017)

    Google Scholar 

  43. T. Munro, L. Liu, H. Ban, C. Glorieux, Int. J. Heat Mass Transf. 112, 1090 (2017)

    Google Scholar 

  44. C. Xing, T. Munro, C. Jensen, H. Ban, Meas. Sci. Technol. 24, 105603 (2013)

    ADS  Google Scholar 

  45. C. Xing, T. Munro, C. Jensen, B. White, H. Ban, Int. J. Thermophys. 1 (2014)

  46. H. Lin, S. Xu, X. Wang, N. Mei, Small 9, 2585 (2013)

    Google Scholar 

  47. H. Lin, S. Xu, C. Li, H. Dong, X. Wang, Nanoscale 5, 4652 (2013)

    ADS  Google Scholar 

  48. H. Lin, S. Xu, Y.-Q. Zhang, X. Wang, A.C.S. Appl, Mater. Interfaces 6, 11341 (2014)

    Google Scholar 

  49. H. Lin, S. Xu, X. Wang, N. Mei, Nanotechnology 24, 415706 (2013)

    Google Scholar 

  50. J. Liu, Z. Xu, Z. Cheng, S. Xu, X. Wang, A.C.S. Appl, Mater. Interf. 7, 27279 (2015)

    Google Scholar 

  51. Y. Xie, S. Xu, Z. Xu, H. Wu, C. Deng, X. Wang, Carbon 98, 381 (2016)

    Google Scholar 

  52. C. Xing, C. Jensen, T. Munro, B. White, H. Ban, M. Chirtoc, Appl. Therm. Eng. 73, 317 (2014)

    Google Scholar 

  53. C. Xing, C. Jensen, T. Munro, B. White, H. Ban, M. Chirtoc, Appl. Therm. Eng. 71, 589 (2014)

    Google Scholar 

  54. A. Salazar, A. Mendioroz, R. Fuente, R. Celorrio, J. Appl. Phys. 107, 043508 (2010)

    ADS  Google Scholar 

  55. T. Munro, L. Liu, C. Glorieux, H. Ban, J. Appl. Phys. 119, 214903 (2016)

    ADS  Google Scholar 

  56. M. Rubner, Arch. F. Hyg. 24, 265 (1895)

    Google Scholar 

  57. R. I. Kunz, R. M. C. Brancalhão, L. de F. C. Ribeiro, M. R. M. Natali, BioMed. Res. Int. 2016, (2016)

  58. W. Abdel-Naby and B. D. Lawrence, in Advances in Silk Science and Technology, edited by A. Basu (Woodhead Publishing, 2015), pp. 171–183

  59. T. Behzad, M. Sain, Polym. Eng. Sci. 47, 977 (2007)

    Google Scholar 

  60. W. E. Morton, J. W. S. Hearle, in Physical Properties of Textile Fibres (Fourth Edition), edited by W. E. Morton, J. W. S. Hearle (Woodhead Publishing, 2008), pp. 168–177

  61. S. Kawabata, In Proc. 4th JapanU.S. Conf. Composite Materials (1988), p. 253

  62. S. Kawabata, J. Textile Mach. Soc. Jpn. 39, 184 (1986)

    Google Scholar 

  63. G. Liu, X. Huang, Y. Wang, Y.-Q. Zhang, X. Wang, Soft Matt. 8, 9792 (2012)

    ADS  Google Scholar 

  64. G. Liu, S. Xu, T.-T. Cao, H. Lin, X. Tang, Y.-Q. Zhang, X. Wang, Biopolymers 101, 1029 (2014)

    Google Scholar 

  65. D13 Committee, Standard Test Method for Measurement of Thermal Effusivity of Fabrics Using a Modified Transient Plane Source (MTPS) Instrument (ASTM International, n.d.)

  66. W. Johnson, J. Masters, Y. Gowayed, J.-C. Hwang, D. Chapman, J. Compos. Technol. Res. 17, 56 (1995)

    Google Scholar 

  67. ISO/TC 61/SC 5 Technical Committee, 22007-2: 2015. PlasticsDetermination of Thermal Conductivity and DiffusivityPart 2: Transient Plane Source (Hot Disk) Method (ISO, 2015)

  68. J. Zhang, R. Rajkhowa, J. Li, X. Liu, X. Wang, Mater. Des. 49, 842 (2013)

    Google Scholar 

  69. S. Du, Antheraea Pernyi Silk: Mechanical and Thermal Properties, Ph. D. Dissertation Deakin University, 2016

  70. Xiatech. http://www.xiatech.com.cn/en/solutions_list.asp?id=25

  71. Thermtest Inc. https://thermtest.com/how-thermal-conductivity-decides-what-you-put-in-your-closet. (2016)

  72. A. Yamada, J. Sericult. Sci. Jpn. 66, 266 (1997)

    Google Scholar 

  73. S. Baxter, Proc. Phys. Soc. 58, 105 (1946)

    ADS  Google Scholar 

  74. W.H. Rees, J. Text. Inst. 37, 132 (1956)

    Google Scholar 

  75. E. S. Rood, Phys. Rev. 18, 356 (2921)

  76. E. Griffiths, G.W.C. Kaye, P.R. Soc, Lond. A Conta. 104, 71 (1923)

    Google Scholar 

  77. L. Zhang, Z. Bai, H. Ban, L. Liu, Phys. Chem. Chem. Phys. 17, 29007 (2015)

    Google Scholar 

  78. N. V. Padaki, B. Das, A. Basu, in Advances in Silk Science and Technology, edited by A. Basu (Woodhead Publishing, 2015), pp. 3–16

  79. M. Yao, M. Shi, Y. Zhang, F. Gao, J. Northwest Inst. Text. Sci. Tech. 15, 42 (2001)

  80. A. Delan, M. Rennau, S.E. Schulz, T. Gessner, Microelectron. Eng. 70, 280 (2003)

    Google Scholar 

  81. R. D. Goldblatt, B. Agarwala, M. B. Anand, E. P. Barth, G. A. Biery, Z. G. Chen, S. Cohen, J. B. Connolly, A. Cowley, T. Dalton, S. K. Das, C. R. Davis, A. Deutsch, C. DeWan, D. C. Edelstein, P. A. Emmi, C. G. Faltermeier, J. A. Fitzsimmons, J. Hedrick, J. E. Heidenreich, C. K. Hu, J. P. Hummel, P. Jones, E. Kaltalioglu, B. E. Kastenmeier, M. Krishnan, W. F. Landers, E. Liniger, J. Liu, N. E. Lustig, S. Malhotra, D. K. Manger, V. McGahay, R. Mih, H. A. Nye, S. Purushothaman, H. A. Rathore, S. C. Seo, T. M. Shaw, A. H. Simon, T. A. Spooner, M. Stetter, R. A. Wachnik, J. G. Ryan, in Proceedings of the IEEE 2000 International Interconnect Technology Conference (Cat. No.00EX407) (2000), pp. 261–263

  82. S. U. Yuruker, M. Arik, E. Tamdogan, R. Melikov, S. Nizamoglu, D. A. Press, and I. Durak, in International Electronic Packaging Technical Conference and Exhibition (2015), pp. V003T04A015

  83. B. Senthil Kumar, T. Ramachandran, Fibres Text East Eur. 26, 47 (2018)

    Google Scholar 

  84. J. Morikawa, M. Ryu, K. Maximova, A. Balčytis, G. Seniutinas, L. Fan, V. Mizeikis, J. Li, X. Wang, M. Zamengo, X. Wang, S. Juodkazis, RSC Adv. 6, 11863 (2016)

    Google Scholar 

  85. X. Jin, J. Zhang, C. Hurren, J. Li, R. Rajkhowa, X. Wang, Text. Res. J. 86, 1935 (2015)

    Google Scholar 

  86. W. Lu, X.M. Yang, Adv. Mater. Res. 459, 649 (2012)

    Google Scholar 

  87. S. Kawabata, J. Text. Mach. Soc. Jpn. 39, 184 (1986)

    Google Scholar 

Download references

Acknowledgments

The author would like to acknowledge Changhu Xing, Heng Ban, Christ Glorieux, Cameron Copeland, Randy Lewis, and Liwang Liu for their contributions to the work on spider silk thermal property measurements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Troy R. Munro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Munro, T.R. Reviewing Thermophysical Properties of Silk Fibers: A Case Study for the Need for Complementary Measurement Techniques. Int J Thermophys 41, 133 (2020). https://doi.org/10.1007/s10765-020-02718-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s10765-020-02718-4

Keywords

Navigation