Skip to main content

Advertisement

Log in

Blockade of PD-1 and TIM-3 immune checkpoints fails to restore the function of exhausted CD8+ T cells in early clinical stages of chronic lymphocytic leukemia

  • Original Article
  • Published:
Immunologic Research Aims and scope Submit manuscript

Abstract

Blocking antibodies targeting immune checkpoint molecules achieved invaluable success in tumor therapy and amazing clinical responses in a variety of cancers. Although common treatment protocols have improved overall survival in patients with chronic lymphocytic leukemia (CLL), they continue to relapse and progress. In the present in vitro study, the application of anti-PD-1 and anti-TIM-3 blocking antibodies was studied to restore the function of exhausted CD8+ T cells in CLL. CD8+ T cells were isolated from peripheral blood of 20 patients with CLL, treated with blocking antibodies, and cocultured with mitomycin-frozen non-CD8+ T cell fraction as target cells. Cultures were stimulated with anti-CD3/CD28 antibodies to assess the proliferation of CD8+ T cells by MTT and stimulated with PMA/ionomycin to measure the levels of CD107a expression and cytokine production by flow cytometry and ELISA, respectively. Our results showed that the blockade of PD-1 and TIM-3 does not improve the proliferation of CD8+ T cells in CLL patients. No significant difference was found between control and blocked groups in terms of degranulation properties and production of IFN-γ, TNF-α, IL-2, and IL-10 by CD8+ T cells. We observed that pre-treatment of CD8+ T cells with blocking antibodies in CLL patients at early clinical stages had no effects on restoring their functional properties. Further in vitro and in vivo complementary studies are required to more explore the utility of checkpoint inhibitors for CLL patients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Brusa D, Serra S, Coscia M, Rossi D, D’Arena G, Laurenti L, et al. The PD-1/PD-L1 axis contributes to T-cell dysfunction in chronic lymphocytic leukemia. Haematologica. 2013;98(6):953–63.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Society AC. Estimated number of deaths for selected cancers by state, US, 2019. 2019.

  3. Eichhorst B, Robak T, Montserrat E, Ghia P, Hillmen P, Hallek M, et al. Chronic lymphocytic leukaemia: ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2015;26(suppl_5):v78–84.

    Article  PubMed  Google Scholar 

  4. Sun C, Dotti G, Savoldo B. Utilizing cell-based therapeutics to overcome immune evasion in hematologic malignancies. Blood. 2016;127(26):3350–9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Alsaab HO, Sau S, Alzhrani R, Tatiparti K, Bhise K, Kashaw SK, et al. PD-1 and PD-L1 checkpoint signaling inhibition for cancer immunotherapy: mechanism, combinations, and clinical outcome. Front Pharmacol. 2017;8:561.

    Article  PubMed  PubMed Central  Google Scholar 

  6. Dougall WC, Kurtulus S, Smyth MJ, Anderson AC. TIGIT and CD 96: new checkpoint receptor targets for cancer immunotherapy. Immunol Rev. 2017;276(1):112–20.

    Article  CAS  PubMed  Google Scholar 

  7. Anderson AC, Joller N, Kuchroo VK. Lag-3, Tim-3, and TIGIT: co-inhibitory receptors with specialized functions in immune regulation. Immunity. 2016;44(5):989–1004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Das M, Zhu C, Kuchroo VK. Tim-3 and its role in regulating anti-tumor immunity. Immunol Rev. 2017;276(1):97–111.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Greaves P, Gribben JG. The role of B7 family molecules in hematologic malignancy. Blood. 2013;121(5):734–44.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Hamid O, Robert C, Daud A, Hodi FS, Hwu WJ, Kefford R, et al. Safety and tumor responses with lambrolizumab (anti-PD-1) in melanoma. N Engl J Med. 2013;369(2):134–44. https://doi.org/10.1056/NEJMoa1305133.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Balar A, Bellmunt J, O'donnell P, Castellano D, Grivas P, Vuky J, et al. Pembrolizumab (pembro) as first-line therapy for advanced/unresectable or metastatic urothelial cancer: preliminary results from the phase 2 KEYNOTE-052 study. Eur Soc Med Oncol; 2016.

  12. Gadgeel SM, Stevenson J, Langer CJ, Gandhi L, Borghaei H, Patnaik A, et al. Pembrolizumab (pembro) plus chemotherapy as front-line therapy for advanced NSCLC: KEYNOTE-021 cohorts AC. Am Soc Clin Oncol 2016.

  13. Motzer RJ, Sharma P, McDermott DF, George S, Hammers HJ, Srinivas S, et al. CheckMate 025 phase III trial: outcomes by key baseline factors and prior therapy for nivolumab (NIVO) versus everolimus (EVE) in advanced renal cell carcinoma (RCC). Am Soc Clin Oncol 2016.

  14. Ansell SM, Lesokhin AM, Borrello I, Halwani A, Scott EC, Gutierrez M, et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N Engl J Med. 2015;372(4):311–9.

    Article  PubMed  Google Scholar 

  15. Seiwert TY, Burtness B, Mehra R, Weiss J, Berger R, Eder JP, et al. Safety and clinical activity of pembrolizumab for treatment of recurrent or metastatic squamous cell carcinoma of the head and neck (KEYNOTE-012): an open-label, multicentre, phase 1b trial. Lancet Oncol. 2016;17(7):956–65.

    Article  CAS  PubMed  Google Scholar 

  16. Tomkowicz B, Walsh E, Cotty A, Verona R, Sabins N, Kaplan F, et al. TIM-3 suppresses anti-CD3/CD28-induced TCR activation and IL-2 expression through the NFAT signaling pathway. PLoS One. 2015;10(10):e0140694.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Allahmoradi E, Taghiloo S, Tehrani M, Hossein-Nattaj H, Janbabaei G, Shekarriz R, et al. CD4+ T cells are exhausted and show functional defects in chronic lymphocytic leukemia. Iran J Immunol : IJI. 2017;14(4):257–69.

    PubMed  Google Scholar 

  18. Taghiloo S, Allahmoradi E, Tehrani M, Hossein-Nataj H, Shekarriz R, Janbabaei G, et al. Frequency and functional characterization of exhausted CD8+ T-cells in chronic lymphocytic leukemia. Eur J Haematol. 2017;98:622–31. https://doi.org/10.1111/ejh.12880.

    Article  CAS  PubMed  Google Scholar 

  19. Taghiloo S, Allahmoradi E, Ebadi R, Tehrani M, Hosseini-Khah Z, Janbabai G, et al. Upregulation of galectin-9 and PD-L1 immune checkpoints molecules in patients with chronic lymphocytic leukemia. Asian Pac J Cancer Prev. 2017;18(8):2269–74. https://doi.org/10.22034/apjcp.2017.18.8.2269.

    Article  PubMed  PubMed Central  Google Scholar 

  20. Hadadi L, Hafezi M, Amirzargar AA, Sharifian RA, Abediankenari S, Asgarian-Omran H. Dysregulated expression of Tim-3 and NKp30 receptors on NK cells of patients with chronic lymphocytic leukemia. Oncol Res Treatment. 2019;42(4):197–203.

    CAS  Google Scholar 

  21. Du W, Yang M, Turner A, Xu C, Ferris R, Huang J, et al. TIM-3 as a target for cancer immunotherapy and mechanisms of action. Int J Mol Sci. 2017;18(3):645.

    Article  PubMed Central  Google Scholar 

  22. Jones RB, Ndhlovu LC, Barbour JD, Sheth PM, Jha AR, Long BR, et al. Tim-3 expression defines a novel population of dysfunctional T cells with highly elevated frequencies in progressive HIV-1 infection. J Exp Med. 2008;205(12):2763–79. https://doi.org/10.1084/jem.20081398.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Lu X, Yang L, Yao D, Wu X, Li J, Liu X, et al. Tumor antigen-specific CD8+ T cells are negatively regulated by PD-1 and Tim-3 in human gastric cancer. Cell Immunol. 2017;313:43–51.

    Article  CAS  PubMed  Google Scholar 

  24. Fourcade J, Sun Z, Benallaoua M, Guillaume P, Luescher IF, Sander C, et al. Upregulation of Tim-3 and PD-1 expression is associated with tumor antigen-specific CD8+ T cell dysfunction in melanoma patients. J Exp Med. 2010;207(10):2175–86. https://doi.org/10.1084/jem.20100637.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. McClanahan F, Riches JC, Miller S, Day WP, Kotsiou E, Neuberg D, et al. Mechanisms of PD-L1/PD-1-mediated CD8 T-cell dysfunction in the context of aging-related immune defects in the Eμ-TCL1 CLL mouse model. Blood. 2015;126(2):212–21. https://doi.org/10.1182/blood-2015-02-626754.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Ding W, LaPlant BR, Call TG, Parikh SA, Leis JF, He R, et al. Pembrolizumab in patients with CLL and Richter transformation or with relapsed CLL. Blood. 2017;129(26):3419–27. https://doi.org/10.1182/blood-2017-02-765685.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Wierz M, Pierson S, Guyonnet L, Viry E, Lequeux A, Oudin A, et al. Dual PD1/LAG3 immune checkpoint blockade limits tumor development in a murine model of chronic lymphocytic leukemia. Blood. 2018;131(14):1617–21. https://doi.org/10.1182/blood-2017-06-792267.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Hanna BS, Yazdanparast H, Demerdash Y, Roessner PM, Schulz R, Lichter P, et al. Combining ibrutinib and checkpoint blockade improves CD8+ T-cell function and control of chronic lymphocytic leukemia in Em-TCL1 mice. Haematologica. 2020:haematol.2019.238154. https://doi.org/10.3324/haematol.2019.238154.

  29. Hanna BS, Roessner PM, Yazdanparast H, Colomer D, Campo E, Kugler S, et al. Control of chronic lymphocytic leukemia development by clonally-expanded CD8(+) T-cells that undergo functional exhaustion in secondary lymphoid tissues. Leukemia. 2019;33(3):625–37. https://doi.org/10.1038/s41375-018-0250-6.

    Article  CAS  PubMed  Google Scholar 

  30. de Weerdt I, Hofland T, de Boer R, Dobber JA, Dubois J, van Nieuwenhuize D, et al. Distinct immune composition in lymph node and peripheral blood of CLL patients is reshaped during venetoclax treatment. Blood Adv. 2019;3(17):2642–52. https://doi.org/10.1182/bloodadvances.2019000360.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Duraiswamy J, Kaluza KM, Freeman GJ, Coukos G. Dual blockade of PD-1 and CTLA-4 combined with tumor vaccine effectively restores T-cell rejection function in tumors. Cancer Res. 2013;73(12):3591–603. https://doi.org/10.1158/0008-5472.can-12-4100.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Riches JC, Davies JK, McClanahan F, Fatah R, Iqbal S, Agrawal S, et al. T cells from CLL patients exhibit features of T-cell exhaustion but retain capacity for cytokine production. Blood. 2013;121(9):1612–21.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Curran MA, Montalvo W, Yagita H, Allison JP. PD-1 and CTLA-4 combination blockade expands infiltrating T cells and reduces regulatory T and myeloid cells within B16 melanoma tumors. Proc Natl Acad Sci. 2010;107(9):4275–80.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Yousefi H, Yuan J, Keshavarz-Fathi M, Murphy JF, Rezaei N. Immunotherapy of cancers comes of age. Expert Rev Clin Immunol. 2017;13(10):1001–15. https://doi.org/10.1080/1744666x.2017.1366315.

    Article  CAS  PubMed  Google Scholar 

  35. McClanahan F, Hanna B, Miller S, Clear AJ, Lichter P, Gribben JG, et al. PD-L1 checkpoint blockade prevents immune dysfunction and leukemia development in a mouse model of chronic lymphocytic leukemia. Blood. 2015;126(2):203–11. https://doi.org/10.1182/blood-2015-01-622936.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Day CL, Kaufmann DE, Kiepiela P, Brown JA, Moodley ES, Reddy S, et al. PD-1 expression on HIV-specific T cells is associated with T-cell exhaustion and disease progression. Nature. 2006;443(7109):350–4. https://doi.org/10.1038/nature05115.

    Article  CAS  PubMed  Google Scholar 

  37. Hallek M. Chronic lymphocytic leukemia: 2015 update on diagnosis, risk stratification, and treatment. Am J Hematol. 2015;90(5):446–60.

    Article  CAS  PubMed  Google Scholar 

  38. Behdad A, Griffin B, Chen YH, Ma S, Kelemen K, Lu X, et al. PD-1 is highly expressed by neoplastic B-cells in Richter transformation. Br J Haematol. 2019;185(2):370–3.

    Article  PubMed  Google Scholar 

  39. Younes A, Brody J, Carpio C, Lopez-Guillermo A, Ben-Yehuda D, Ferhanoglu B, et al. Safety and activity of ibrutinib in combination with nivolumab in patients with relapsed non-Hodgkin lymphoma or chronic lymphocytic leukaemia: a phase 1/2a study. Lancet Haematol. 2019;6(2):e67–78.

    Article  PubMed  Google Scholar 

  40. Ding W, Le-Rademacher J, Call TG, Parikh SA, Leis JF, Shanafelt TD, et al. PD-1 blockade with pembrolizumab in relapsed CLL including Richter’s transformation: an updated report from a phase 2 trial (MC1485). Am Soc Hematol 2016.

  41. Jain N, Ferrajoli A, Basu S, Thompson PA, Burger JA, Kadia TM, et al. A phase II trial of nivolumab combined with Ibrutinib for patients with Richter transformation. Am Soc Hematol 2018.

  42. Poropatich K, Fontanarosa J, Samant S, Sosman JA, Zhang B. Cancer immunotherapies: are they as effective in the elderly? Drugs Aging. 2017;34(8):567–81. https://doi.org/10.1007/s40266-017-0479-1.

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank the patients and their families for their support, cooperation, and patience. We would like to thank the staff of the departments associated with the care and management of the patients.

Funding

This study was financially supported by grants from the National Institute for Medical Research Development (NIMAD, grant number: 962337) and Mazandaran University of Medical Sciences (grant number: 3160).

Author information

Authors and Affiliations

Authors

Contributions

Hadiseh Rezazadeh performed the experiments and wrote the manuscript. Mojgan Astaneh contributed to the MACS isolation and cell culture. Mohsen Tehrani consulted in the optimization of the experiments. Hadi Hossein-Nataj contributed to the performing and analyzing of the flow cytometry experiments. Ehsan Zaboli and Ramin Shekarriz consulted as clinicians to obtain samples. Hossein Asgarian-Omran conceived the original idea, supervised the project, and edited the final manuscript.

Corresponding author

Correspondence to Hossein Asgarian-Omran.

Ethics declarations

Written informed consent letters were obtained from all participants in accordance with the Ethical Committee of Mazandaran University of Medical Sciences.

Conflict of interest

The authors declare that they have no conflict of interest.

Ethics approval

The authors state that written informed consent was obtained from all participants and the study has been approved by the Ethical Committee of Mazandaran University of Medical Sciences according to the Declaration of Helsinki.

Disclaimer

The funding sources had no involvement in manuscript preparation.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rezazadeh, H., Astaneh, M., Tehrani, M. et al. Blockade of PD-1 and TIM-3 immune checkpoints fails to restore the function of exhausted CD8+ T cells in early clinical stages of chronic lymphocytic leukemia. Immunol Res 68, 269–279 (2020). https://doi.org/10.1007/s12026-020-09146-4

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12026-020-09146-4

Keywords

Navigation