Skip to main content

Advertisement

Log in

Identification and characterization of Dicer-like genes in leaf rust pathogen (Puccinia triticina) of wheat

  • Original Article
  • Published:
Functional & Integrative Genomics Aims and scope Submit manuscript

Abstract

Puccinia triticina (P. triticina) is one of the most devastating fungal pathogens of wheat which causes significant annual yield loss to the crop. Understanding the gene regulatory mechanism of the biotrophic pathogen is one of the important aspects of host-pathogen interaction studies. Dicer-like genes are considered as important mediators of RNAi-based gene regulation. In this study, we report the presence of three Dicer-like genes (Pt-DCL1, Pt-DCL2, Pt-DCL3) in P. triticina genome identified through computational and biological analyses. Quantitative real-time PCR studies revealed an increase in the expression of these genes in germinating spore stages. Heterologous expression combined with mass spectrometry analysis of Pt-DCL2 confirmed the presence of a canonical Dicer-like gene in P. triticina. Phylogenetic analysis of the Pt-DCLs with the Dicer-like proteins from other organisms showed a distinct cluster of rust pathogens from the order Pucciniales. The results indicated a species-specific duplication of Dicer-like genes within the wheat rust pathogens. This study, for the first time, reports the presence of Dicer-dependent RNAi pathway in P. triticina that may play a role in gene regulatory mechanism of the pathogen during its development. Our study serves as a vital source of information for further RNAi-based molecular studies for better understanding and management of the wheat leaf rust disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Albright JC, Dassenko DJ, Mohamed EA, Beussman DJ (2009) Identifying gel-separated proteins using in-gel digestion, mass spectrometry, and database searching: consider the chemistry. Biochem Mol Biol Educ 37:49–55

    CAS  PubMed  Google Scholar 

  • Bai Y, Lan F, Yang W, Zhang F, Yang K, Li Z, Gao P, Wang S (2015) sRNA profiling in Aspergillus flavus reveals differentially expressed miRNA-like RNAs response to water activity and temperature. Fungal Genet Biol 81:113–119

    CAS  PubMed  Google Scholar 

  • Bernstein DA, Vyas VK, Weinberg DE, Drinnenberg IA, Bartel DP, Fink GR (2012) Candida albicans Dicer (CaDcr1) is required for efficient ribosomal and spliceosomal RNA maturation. Proc Natl Acad Sci 109:523–528

    CAS  PubMed  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    CAS  PubMed  Google Scholar 

  • Bollmann SR, Fang Y, Press CM, Tyler BM, Grünwald NJ (2016) Diverse evolutionary trajectories for small RNA biogenesis genes in the oomycete genus Phytophthora. Front Plant Sci 7:284

    PubMed  PubMed Central  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    CAS  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136:642–655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Castel SE, Ren J, Bhattacharjee S, Chang A-Y, Sánchez M, Valbuena A, Antequera F, Martienssen RA (2014) Dicer promotes transcription termination at sites of replication stress to maintain genome stability. Cell 159:572–583

    CAS  PubMed  PubMed Central  Google Scholar 

  • Catalanotto C, Pallotta M, ReFalo P, Sachs MS, Vayssie L, Macino G, Cogoni C (2004) Redundancy of the two dicer genes in transgene-induced posttranscriptional gene silencing in Neurospora crassa. Mol Cell Biol 24:2536–2545

    CAS  PubMed  PubMed Central  Google Scholar 

  • Cerutti H, Casas-Mollano JA (2006) On the origin and functions of RNA-mediated silencing: from protists to man. Curr Genet 50:81–99

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chen R, Jiang N, Jiang Q, Sun X, Wang Y, Zhang H, Hu Z (2014) Exploring microRNA-like small RNAs in the filamentous fungus Fusarium oxysporum. PLoS One 9:e104956

    PubMed  PubMed Central  Google Scholar 

  • Chen Y, Gao Q, Huang M, Liu Y, Liu Z, Liu X, Ma Z (2015) Characterization of RNA silencing components in the plant pathogenic fungus Fusarium graminearum. Sci Rep 5:12500

    PubMed  PubMed Central  Google Scholar 

  • Chendrimada TP, Gregory RI, Kumaraswamy E, Norman J, Cooch N, Nishikura K, Shiekhattar R (2005) TRBP recruits the Dicer complex to Ago2 for microRNA processing and gene silencing. Nature 436:740–744

    CAS  PubMed  PubMed Central  Google Scholar 

  • Choi J, Kim K-T, Jeon J, Wu J, Song H, Asiegbu FO, Lee Y-H (2014) funRNA: a fungi-centered genomics platform for genes encoding key components of RNAi. BMC genomics 15:S14

  • Cuomo CA, Bakkeren G, Khalil HB, Panwar V, Joly D, Linning R, Sakthikumar S, Song X, Adiconis X, Fan L (2017) Comparative analysis highlights variable genome content of wheat rusts and divergence of the mating loci. G3: genes. Genomes, Genetics 7:361–376

    CAS  Google Scholar 

  • Dahlmann TA, Kueck U (2015) Dicer-dependent biogenesis of small RNAs and evidence for microRNA-like RNAs in the penicillin producing fungus Penicillium chrysogenum. PLoS One 10:e0125989

    PubMed  PubMed Central  Google Scholar 

  • Darriba D, Taboada GL, Doallo R, Posada D (2011) ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics 27:1164–1165

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drinnenberg IA, Fink GR, Bartel DP (2011) Compatibility with killer explains the rise of RNAi-deficient fungi. Science 333:1592–1592

    CAS  PubMed  PubMed Central  Google Scholar 

  • Drinnenberg IA, Weinberg DE, Xie KT, Mower JP, Wolfe KH, Fink GR, Bartel DP (2009) RNAi in budding yeast. Science 326:544–550

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dubey H, Kiran K, Jaswal R, Jain P, Kayastha AM, Bhardwaj SC, Mondal TK, Sharma TR (2019) Discovery and profiling of small RNAs from Puccinia triticina by deep sequencing and identification of their potential targets in wheat. Functional & integrative genomics 19:391–407

    CAS  Google Scholar 

  • Ellendorff U, Fradin EF, De Jonge R, Thomma BP (2008) RNA silencing is required for Arabidopsis defence against Verticillium wilt disease. J Exp Bot 60:591–602

    PubMed  PubMed Central  Google Scholar 

  • Fahlgren N, Bollmann SR, Kasschau KD, Cuperus JT, Press CM, Sullivan CM, Chapman EJ, Hoyer JS, Gilbert KB, Grünwald NJ (2013) Phytophthora have distinct endogenous small RNA populations that include short interfering and microRNAs. PLoS One 8:e77181

    CAS  PubMed  PubMed Central  Google Scholar 

  • Feng H, Xu M, Liu Y, Dong R, Gao X, Huang L (2017) Dicer-like genes are required for H2O2 and KCl stress responses, pathogenicity and small rna generation in Valsa mali. Front Microbiol 8:1166

    PubMed  PubMed Central  Google Scholar 

  • Francia S, Michelini F, Saxena A, Tang D, de Hoon M, Anelli V, Mione M, Carninci P, di Fagagna FA (2012) Site-specific DICER and DROSHA RNA products control the DNA-damage response. Nature 488:231–235

    CAS  PubMed  PubMed Central  Google Scholar 

  • Fukagawa T, Nogami M, Yoshikawa M, Ikeno M, Okazaki T, Takami Y, Nakayama T, Oshimura M (2004) Dicer is essential for formation of the heterochromatin structure in vertebrate cells. Nat Cell Biol 6:784–791

    CAS  PubMed  Google Scholar 

  • Garcia-Ruiz H, Takeda A, Chapman EJ, Sullivan CM, Fahlgren N, Brempelis KJ, Carrington JC (2010) Arabidopsis RNA-dependent RNA polymerases and dicer-like proteins in antiviral defense and small interfering RNA biogenesis during Turnip Mosaic Virus infection. Plant Cell 22:481–496

    CAS  PubMed  PubMed Central  Google Scholar 

  • Guindon S, Dufayard J-F, Lefort V, Anisimova M, Hordijk W, Gascuel O (2010) New algorithms and methods to estimate maximum-likelihood phylogenies: assessing the performance of PhyML 3.0. Syst Biol 59:307–321

    CAS  PubMed  Google Scholar 

  • Hammond SM (2005) Dicing and slicing: the core machinery of the RNA interference pathway. FEBS Lett 579:5822–5829

    CAS  PubMed  Google Scholar 

  • Hu Y, Stenlid J, Elfstrand M, Olson Å (2013) Evolution of RNA interference proteins dicer and argonaute in Basidiomycota. Mycologia 105:1489–1498

    CAS  PubMed  Google Scholar 

  • Huang J, Yang M, Zhang X (2016) The function of small RNAs in plant biotic stress response. J Integr Plant Biol 58:312–327

    CAS  PubMed  Google Scholar 

  • Jiang N, Yang Y, Janbon G, Pan J, Zhu X (2012) Identification and functional demonstration of miRNAs in the fungus Cryptococcus neoformans. PLoS One 7:e52734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kadotani N, Nakayashiki H, Tosa Y, Mayama S (2004) One of the two Dicer-like proteins in the filamentous fungi Magnaporthe oryzae genome is responsible for hairpin RNA-triggered RNA silencing and related small interfering RNA accumulation. J Biol Chem 279:44467–44474

    CAS  PubMed  Google Scholar 

  • Katiyar-Agarwal S, Gao S, Vivian-Smith A, Jin H (2007) A novel class of bacteria-induced small RNAs in Arabidopsis. Genes Dev 21:3123–3134

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kiran K, Rawal HC, Dubey H, Jaswal R, Devanna B, Gupta DK, Bhardwaj SC, Prasad P, Pal D, Chhuneja P (2016) Draft genome of the wheat rust pathogen (Puccinia triticina) unravels genome-wide structural variations during evolution. Genome biology and evolution 8:2702–2721

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kurzynska-Kokorniak A, Koralewska N, Pokornowska M, Urbanowicz A, Tworak A, Mickiewicz A, Figlerowicz M (2015) The many faces of Dicer: the complexity of the mechanisms regulating Dicer gene expression and enzyme activities. Nucleic Acids Res 43:4365–4380

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lee H-C, Li L, Gu W, Xue Z, Crosthwaite SK, Pertsemlidis A, Lewis ZA, Freitag M, Selker EU, Mello CC (2010) Diverse pathways generate microRNA-like RNAs and Dicer-independent small interfering RNAs in fungi. Mol Cell 38:803–814

    CAS  PubMed  PubMed Central  Google Scholar 

  • Letunic I, Bork P (2016) Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees. Nucleic Acids Res 44:W242–W245

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Feng Y, Zhu Z (2009) Dicer-like (DCL) proteins in plants. Functional & integrative genomics 9:277–286

    CAS  Google Scholar 

  • Liu Q, Rand TA, Kalidas S, Du F, Kim H-E, Smith DP, Wang X (2003) R2D2, a bridge between the initiation and effector steps of the Drosophila RNAi pathway. Science 301:1921–1925

    CAS  PubMed  Google Scholar 

  • Liu Z, Wang J, Cheng H, Ke X, Sun L, Zhang QC, Wang H-W (2018) Cryo-EM structure of human dicer and its complexes with a pre-miRNA substrate. Cell 173:1191-1203. e1112

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2− ΔΔCT method. methods 25:402-408

  • MacRae IJ, Zhou K, Li F, Repic A, Brooks AN, Cande WZ, Adams PD, Doudna JA (2006) Structural basis for double-stranded RNA processing by Dicer. Science 311:195–198

    CAS  PubMed  Google Scholar 

  • Margis R, Fusaro AF, Smith NA, Curtin SJ, Watson JM, Finnegan EJ, Waterhouse PM (2006) The evolution and diversification of Dicers in plants. FEBS Lett 580:2442–2450

    CAS  PubMed  Google Scholar 

  • Mierendorf RC, Morris BB, Hammer B, Novy RE (2000) Expression and purification of recombinant proteins using the pET systemThe nucleic acid protocols handbook. Springer, pp:947–977

  • Mueth NA, Ramachandran SR, Hulbert SH (2015) Small RNAs from the wheat stripe rust fungus (Puccinia striiformis f. sp. tritici). BMC Genomics 16:718

    PubMed  PubMed Central  Google Scholar 

  • Mukherjee K, Campos H, Kolaczkowski B (2012) Evolution of animal and plant dicers: early parallel duplications and recurrent adaptation of antiviral RNA binding in plants. Mol Biol Evol 30:627–641

    PubMed  PubMed Central  Google Scholar 

  • Navarro L, Jay F, Nomura K, He SY, Voinnet O (2008) Suppression of the microRNA pathway by bacterial effector proteins. Science 321:964–967

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nicolas FE, Torres-Martínez S, Ruiz-Vazquez RM (2013) Loss and retention of RNA interference in fungi and parasites. PLoS Pathog 9:e1003089

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nunes CC, Sailsbery JK, Dean RA (2011) Characterization and application of small RNAs and RNA silencing mechanisms in fungi. Fungal Biology Reviews 25:172–180

    Google Scholar 

  • Ordoñez M, Kolmer J (2007) Simple sequence repeat diversity of a worldwide collection of Puccinia triticina from durum wheat. Phytopathology 97:574–583

    PubMed  Google Scholar 

  • Park J-E, Heo I, Tian Y, Simanshu DK, Chang H, Jee D, Patel DJ, Kim VN (2011) Dicer recognizes the 5′ end of RNA for efficient and accurate processing. Nature 475:201–205

    CAS  PubMed  PubMed Central  Google Scholar 

  • Provost P, Silverstein RA, Dishart D, Walfridsson J, Djupedal I, Kniola B, Wright A, Samuelsson B, Rådmark O, Ekwall K (2002) Dicer is required for chromosome segregation and gene silencing in fission yeast cells. Proc Natl Acad Sci 99:16648–16653

    CAS  PubMed  Google Scholar 

  • Redfern AD, Colley SM, Beveridge DJ, Ikeda N, Epis MR, Li X, Foulds CE, Stuart LM, Barker A, Russell VJ (2013) RNA-induced silencing complex (RISC) proteins PACT, TRBP, and Dicer are SRA binding nuclear receptor coregulators. Proc Natl Acad Sci 110:6536–6541

    CAS  PubMed  Google Scholar 

  • Segers GC, Zhang X, Deng F, Sun Q, Nuss DL (2007) Evidence that RNA silencing functions as an antiviral defense mechanism in fungi. Proc Natl Acad Sci 104:12902–12906

    CAS  PubMed  Google Scholar 

  • Shabalina SA, Koonin EV (2008) Origins and evolution of eukaryotic RNA interference. Trends Ecol Evol 23:578–587

    PubMed  PubMed Central  Google Scholar 

  • Shao F, Qiu D, Lu S (2015) Comparative analysis of the Dicer-like gene family reveals loss of miR162 target site in SmDCL1 from Salvia miltiorrhiza. Sci Rep 5:9891

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shimodaira H, Hasegawa M (1999) Multiple comparisons of log-likelihoods with applications to phylogenetic inference. Mol Biol Evol 16:1114–1116

    CAS  Google Scholar 

  • Sinkkonen L, Hugenschmidt T, Filipowicz W, Svoboda P (2010) Dicer is associated with ribosomal DNA chromatin in mammalian cells. PLoS One 5:e12175

    PubMed  PubMed Central  Google Scholar 

  • Svobodova E, Kubikova J, Svoboda P (2016) Production of small RNAs by mammalian Dicer. Pflügers Archiv-European Journal of Physiology 468:1089–1102

    CAS  PubMed  PubMed Central  Google Scholar 

  • Tian Y, Simanshu DK, Ma J-B, Park J-E, Heo I, Kim VN, Patel DJ (2014) A phosphate-binding pocket within the platform-PAZ-connector helix cassette of human Dicer. Mol Cell 53:606–616

    CAS  PubMed  PubMed Central  Google Scholar 

  • Vazquez F, Gasciolli V, Crété P, Vaucheret H (2004) The nuclear dsRNA binding protein HYL1 is required for microRNA accumulation and plant development, but not posttranscriptional transgene silencing. Curr Biol 14:346–351

    CAS  PubMed  Google Scholar 

  • Verdel A, Moazed D (2005) RNAi-directed assembly of heterochromatin in fission yeast. FEBS Lett 579:5872–5878

    CAS  PubMed  Google Scholar 

  • Wang B, Sun Y, Song N, Zhao M, Liu R, Feng H, Wang X, Kang Z (2017) Puccinia striiformis f. sp. tritici microRNA-like RNA 1 (Pst-milR1), an important pathogenicity factor of Pst, impairs wheat resistance to Pst by suppressing the wheat pathogenesis-related 2 gene. New Phytol 215:338–350

    CAS  PubMed  Google Scholar 

  • Wang Q, An B, Hou X, Guo Y, Luo H, He C (2018) Dicer-like proteins regulate the growth, conidiation, and pathogenicity of Colletotrichum gloeosporioides from Hevea brasiliensis. Front Microbiol 8:2621

    PubMed  PubMed Central  Google Scholar 

  • Wei W, Ba Z, Gao M, Wu Y, Ma Y, Amiard S, White CI, Danielsen JMR, Yang Y-G, Qi Y (2012) A role for small RNAs in DNA double-strand break repair. Cell 149:101–112

    CAS  PubMed  Google Scholar 

  • Weiberg A, Wang M, Lin F-M, Zhao H, Zhang Z, Kaloshian I, Huang H-D, Jin H (2013) Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–123

    CAS  PubMed  PubMed Central  Google Scholar 

  • Wojdyla K, Rogowska-Wrzesinska A, Wrzesinski K, Roepstorff P (2011) Mass spectrometry based approach for identification and characterisation of fluorescent proteins from marine organisms. J Proteome 75:44–55

    CAS  Google Scholar 

  • Xie Z, Johansen LK, Gustafson AM, Kasschau KD, Lellis AD, Zilberman D, Jacobsen SE, Carrington JC (2004) Genetic and functional diversification of small RNA pathways in plants. PLoS Biol 2:E104

    PubMed  PubMed Central  Google Scholar 

  • Yuan JS, Reed A, Chen F, Stewart CN (2006) Statistical analysis of real-time PCR data. BMC bioinformatics 7:85

    PubMed  PubMed Central  Google Scholar 

  • Zeng W, Wang J, Wang Y, Lin J, Fu Y, Xie J, Jiang D, Chen T, Liu H, Cheng J (2018) Dicer-like proteins regulate sexual development via the biogenesis of perithecium-specific microRNAs in a plant pathogenic fungus Fusarium graminearum. Front Microbiol 9

  • Zhou J, Fu Y, Xie J, Li B, Jiang D, Li G, Cheng J (2012) Identification of microRNA-like RNAs in a plant pathogenic fungus Sclerotinia sclerotiorum by high-throughput sequencing. Mol Gen Genomics 287:275–282

    CAS  Google Scholar 

Download references

Funding

TRS is thankful to the SERB-Department of Science and Technology, Govt. of India, for JC Bose National Fellowship. HD is thankful to the University Grants Commission (UGC), New Delhi, for providing Junior Research Fellowship (JRF).

Author information

Authors and Affiliations

Authors

Contributions

TRS conceived and designed the project, HD performed computational analysis and biological experiments, and KK and RJ helped in biological experiments. NJ and NKS helped in the MALDI-TOF analysis, SCB provided biological material. TKM provided input during manuscript writing. HD, KK, TRS, and AMK wrote the manuscript.

Corresponding authors

Correspondence to Arvind M. Kayastha or Tilak Raj Sharma.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 863 kb)

ESM 2

(XLSX 9 kb)

ESM 3

(XLSX 84 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dubey, H., Kiran, K., Jaswal, R. et al. Identification and characterization of Dicer-like genes in leaf rust pathogen (Puccinia triticina) of wheat. Funct Integr Genomics 20, 711–721 (2020). https://doi.org/10.1007/s10142-020-00745-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10142-020-00745-w

Keywords

Navigation