Skip to main content
Log in

Wave propagation in viscoelastic composite materials with long-memory effects

  • Original Article
  • Published:
Continuum Mechanics and Thermodynamics Aims and scope Submit manuscript

Abstract

The homogenization of viscoelastic composite materials gives rise to long-memory effects, reflected by the presence in the homogenized viscoelastic constitutive law of a delayed stress response expressed as a convolution integral involving the past material strain history. Computations reveal that the long-memory has the ability to delay or even absorb waves depending on the fraction of reinforcement and relative properties of the building phases with the composite. An approximation by a one-term Prony series of the computed spectrum of retardation times is shown to provide an accurate representation of the continuous spectrum of retardation times when simulating creep experiments. The long-memory effects entail shifts of the frequency band diagrams for both the natural and damped frequencies due to the presence of damping. Decreasing the effective retardation time of the composite leads to a faster attenuation of propagating longitudinal and shear waves.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Abdessamad, Z., Kostin, I., Panasenko, G., Smyshlyaev, V.P.: Memory effect in homogenization of a viscoelastic Kelvin-Voigt model with time-dependent coefficients. Math. Mod. Methods Appl. Sci. 19(09), 1603–1630 (2009)

    MathSciNet  MATH  Google Scholar 

  2. Bercoff, J., Tanter, M., Fink, M.: Supersonic shear imaging: a new technique for soft tissue elasticity mapping. IEEE Trans. Ultrason. Ferroelectr. Freq. Control 51(4), 396–409 (2004)

    Google Scholar 

  3. Chaudhuri, O.: Viscoelastic hydrogels for 3D cell culture. Biomater. Sci. 5(8), 1480–1490 (2017)

    Google Scholar 

  4. Cherraf-Schweyer, C., Maurice, G., Taghite, M., Taous, K.: Periodic homogenization in viscoelasticity. Influence of micro mechanical parameters on the homogenized memory law: numerical tests. ZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech. Appl. Math. Mech. 87(3), 235–246 (2007)

    ADS  MathSciNet  MATH  Google Scholar 

  5. Christensen, R.M.: Viscoelastic properties of heterogeneous media. J. Mech. Phys. Solids 17(1), 23–41 (1969)

    ADS  Google Scholar 

  6. Cowin, S.C.: How is a tissue built? J. Biomech. Eng. 122(6), 553–569 (2000)

    Google Scholar 

  7. Daridon, L., Licht, C., Orankitjaroen, S., Pagano, S.: Periodic homogenization for Kelvin–Voigt viscoelastic media with a Kelvin–Voigt viscoelastic interphase. Eur. J. Mech.-A/Solids 58, 163–171 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  8. Del Toro, R., Bacigalupo, A., Paggi, M.: Characterization of wave propagation in periodic viscoelastic materials via asymptotic-variational homogenization. Int. J. Solids Struct. 172, 110–146 (2019)

    Google Scholar 

  9. DeWall, R.J., Slane, L.C., Lee, K.S., Thelen, D.G.: Spatial variations in Achilles tendon shear wave speed. J. Biomech. 47(11), 2685–2692 (2014)

    Google Scholar 

  10. Francfort, G., Leguillon, D., Suquet, P.: Homogenization for linearly viscoelastic bodies. Comptes Rendus De L’Académie Des Sciences Série I-Mathématique 296(5), 287–290 (1983)

    MathSciNet  Google Scholar 

  11. Francfort, G.A., Suquet, P.M.: Homogenization and mechanical dissipation in thermoviscoelasticity. Arch. Ration. Mech. Anal. 96(3), 265–293 (1986)

    MathSciNet  MATH  Google Scholar 

  12. Fung, Y.C.: Biomechanics. Mechanical Properties of Livingtissues. Springer, Berlin (1993)

    Google Scholar 

  13. Ganghoffer, J.F., Laurent, C., Maurice, G., Rahouadj, R., Wang, X.: Nonlinear viscous behavior of the tendon’s fascicles from the homogenization of viscoelastic collagen fibers. Eur. J. Mech.-A/Solids 59, 265–279 (2016)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Greenleaf, J.F., Fatemi, M., Insana, M.: Selected methods for imaging elastic properties of biological tissues. Annu. Rev. Biomed. Eng. 5(1), 57–78 (2003)

    Google Scholar 

  15. Gründemann, H., Sanchez-Palencia, E.: Homogenization techniques for composite media. In: Proceedings, Udine, Italy 1985, vol. ix. Springer-Verlag, Berlin. etc., p. 397 dm 73,d. isbn 3-540-17616-0 (lecture notes in physics 272), ZAMM J. Appl. Math. Mech./Z. Angew. Math. Mech. 68(6) (1988) 212–212 (1987)

  16. Hashin, Z.: Viscoelastic behavior of heterogeneous media. J. Appl. Mech. 32(3), 630–636 (1965)

    ADS  Google Scholar 

  17. He, L.H., Lim, C.W.: Time-dependent interfacial sliding in fiber composites under longitudinal shear. Compos. Sci. Technol. 61(4), 579–584 (2001)

    Google Scholar 

  18. Hine, P.J., Gusev, A.A.: Validating a micromechanical modelling scheme for predicting the five independent viscoelastic constants of unidirectional carbon fibre composites. Int. J. Eng. Sci. 144, 103133 (2019)

    MATH  Google Scholar 

  19. Hollkamp, J., Sen, M., Semperlotti, F.: Analysis of dispersion and propagation properties in a periodic rod using a space-fractional wave equation. J. Sound Vib. 441, 204–220 (2019)

    ADS  Google Scholar 

  20. Huang, D., Huang, Y., Xiao, Y., Yang, X., Lin, H., Feng, G., et al.: Viscoelasticity in natural tissues and engineered scaffolds for tissue reconstruction. Acta Biomater. (2019). https://doi.org/10.1016/j.actabio.2019.08/013

    Article  Google Scholar 

  21. Kannus, P., Jozsa, L.G., Josza, L.: Human Tendons: Anatomy, Physiology, and Pathology. Human Kinetics Publishers, Champaign (1997)

    Google Scholar 

  22. Koutsawa, Y., Cherkaoui, M., Daya, E.M.: Multicoating inhomogeneities problem for effective viscoelastic properties of particulate composite materials. J. Eng. Mater. Technol. 131(2), 021012 (2009). https://doi.org/10.1115/1.3086336

  23. Koutsawa, Y., Haberman, M.R., Cherkaoui, M.: Multiscale design of a rectangular sandwich plate with viscoelastic core and supported at extents by viscoelastic materials. Int. J. Mech. Mater. Des. 5(1), 29–44 (2009)

    Google Scholar 

  24. Kubo, K., Kawakami, Y., Kanehisa, H., Fukunaga, T.: Measurement of viscoelastic properties of tendon structures in vivo. Scand. J. Med. Sci. Sports 12(1), 3–8 (2002)

    Google Scholar 

  25. Li, K., Gao, X.L., Roy, A.K.: Micromechanical modeling of viscoelastic properties of carbon nanotube-reinforced polymer composites. Mech. Adv. Mater. Struct. 13(4), 317–328 (2006)

    Google Scholar 

  26. Li, R., Ni, Q.Q., Xia, H., Natsuki, T.: Analysis of individual attenuation components of ultrasonic waves in composite material considering frequency dependence. Compos. B Eng. 140, 232–240 (2018)

    Google Scholar 

  27. Liu, S., Chen, K.Z., Feng, X.A.: Prediction of viscoelastic property of layered materials. Int. J. Solids Struct. 41(13), 3675–3688 (2004)

    MATH  Google Scholar 

  28. Luciano, R., Barbero, E.J.: Analytical expressions for the relaxation moduli of linear viscoelastic composites with periodic microstructure. J. Appl. Mech. 62(3), 786–793 (1995)

    ADS  MATH  Google Scholar 

  29. Lynch, H.A., Johannessen, W., Wu, J.P., Jawa, A., Elliott, D.M.: Effect of fiber orientation and strain rate on the nonlinear uniaxial tensile material properties of tendon. J. Biomech. Eng. 125(5), 726–731 (2003)

    Google Scholar 

  30. Manconi, E., Mace, B.R.: Estimation of the loss factor of viscoelastic laminated panels from finite element analysis. J. Sound Vib. 329(19), 3928–3939 (2010)

    ADS  Google Scholar 

  31. Mareau, C., Berbenni, S.: An affine formulation for the self-consistent modeling of elasto-viscoplastic heterogeneous materials based on the translated field method. Int. J. Plast 64, 134–150 (2015)

    Google Scholar 

  32. Martin, J.A., Schmitz, D.G., Ehlers, A.C., Allen, M.S., Thelen, D.G.: Calibration of the shear wave speed-stress relationship in ex vivo tendons. J. Biomech. 90, 9–15 (2019)

    Google Scholar 

  33. Ohno, N., Wu, X., Matsuda, T.: Homogenized properties of elastic-viscoplastic composites with periodic internal structures. Int. J. Mech. Sci. 42(8), 1519–1536 (2000)

    MATH  Google Scholar 

  34. Pernin, J.N., Jacquet, E.: Elasticity and viscoelasticity in highly heterogeneous composite medium: threshold phenomenon and homogenization. Int. J. Eng. Sci. 39(15), 1655–1689 (2001)

    MathSciNet  MATH  Google Scholar 

  35. Salman, M., Sabra, K.G.: Assessing non-uniform stiffening of the achilles tendon noninvasively using surface wave. J. Biomech. 82, 357–360 (2019)

    Google Scholar 

  36. SanchezPalencia, E.: Non Homogeneous Media and Vibration Theory, Lecture Notes in Physics, No. 127, p. 84128. Springer, Berlin (1980)

    Google Scholar 

  37. Shen, Z.L.: Tensile mechanical properties of isolated collagen fibrils obtained by microelectromechanical systems technology. Doctoral dissertation, Case Western reserve university (2010)

  38. Sujithra, R., Srinivasan, S.M., Arockiarajan, A.: Modeling memory effects in amorphous polymers. Int. J. Eng. Sci. 84, 95–112 (2014)

    Google Scholar 

  39. Suquet, P.: Four exact relations for the effective relaxation function of linear viscoelastic composites. Comptes Rendus Mécanique 340(4–5), 387–399 (2012)

    ADS  Google Scholar 

  40. Tang, T., Felicelli, S.D.: Micromechanical investigations of polymer matrix composites with shape memory alloy reinforcement. Int. J. Eng. Sci. 94, 181–194 (2015)

    MathSciNet  MATH  Google Scholar 

  41. Wang, J.A.C.: Mechanobiology of tendon. J. Biomech. 39, 1563–1582 (2006)

    Google Scholar 

  42. Wang, Y.M., Weng, G.J.: The Influence of inclusion shape on the overall viscoelastic behavior of composites. J. Appl. Mech. 59(3), 510–518 (1992)

    ADS  MATH  Google Scholar 

  43. Woo, S.L.: Mechanical properties of tendons and ligaments. I. Quasi-static and nonlinear viscoelastic properties. Biorheology 19(3), 385 (1982)

    MathSciNet  Google Scholar 

  44. Yi, Y.M., Park, S.H., Youn, S.K.: Asymptotic homogenization of viscoelastic composites with periodic microstructures. Int. J. Solids Struct. 35(17), 2039–2055 (1998)

    MathSciNet  MATH  Google Scholar 

  45. Reda, H., Rahali, Y., Ganghoffer, J.F., Lakiss, H.: Wave propagation in 3D viscoelastic auxetic and textile materials by homogenized continuum micropolar models. Comp. Struct. 141, 328–345 (2016)

    Google Scholar 

  46. Reda, H., Rahali, Y., Ganghoffer, J.F., Lakiss, H.: Analysis of dispersive waves in repetitive lattices based on homogenized second-gradient continuum models. Comp. Struct. 152, 712–728 (2016)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean-François Ganghoffer.

Ethics declarations

Data Availibility Statement

The raw/processed data required to reproduce these findings cannot be shared at this time due to technical or time limitations.

Additional information

Communicated by Andreas Öchsner.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix A: Longitudinal wave propagation analysis with long-memory effects

In order to analyze wave propagation in 1D composites to assess the impact of the long-memory, we consider the general constitutive law in the case of a tensile load given in component format by:

$$\begin{aligned} \sigma _{11}^{\hom } (y,t)=C_{11}^{\hom } \varepsilon (t)+\eta _{11}^{\hom } \frac{\partial }{\partial t}\varepsilon (t)+\int _0^t {C_{11} (t-s)} \frac{\partial \varepsilon }{\partial t}(s)\mathrm{d}s \end{aligned}$$
(A.1)

The dynamical equations of motion for the homogenized 1D viscoelastic continuum writes in terms of the Cauchy stress components, adopting the Cartesian in-plane coordinates x, y:

$$\begin{aligned} \frac{{\partial \sigma _{{xx}} }}{{\partial x}} = \rho ^{*}\ddot{u} \Rightarrow \frac{{\partial \left( {C_{{11}}^{{\hom }} \varepsilon (t) + \eta _{{11}}^{{\hom }} \frac{\partial }{{\partial t}}\varepsilon (t) + \int _{0}^{t} {C_{{11}} (t - s)} \frac{{\partial \varepsilon }}{{\partial t}}(s)\mathrm{d}s} \right) }}{{\partial x}} = \rho ^{*}\ddot{u} \end{aligned}$$
(A.2)

In order to obtain the displacement formulation of the equations of motion, the macrostrain is expressed in terms of the displacement, thus leading to

$$\begin{aligned} C_{11}^{\hom } \frac{\partial ^{2}u}{\partial x^{2}}+\eta _{11}^{\hom } \frac{\partial ^{3}u}{\partial t\partial x^{2}}+\int _0^t {C_{11} (t-s)} \frac{\partial ^{3}u}{\partial x\partial t}(s)\mathrm{d}s=\rho ^{*}\ddot{u} \end{aligned}$$
(A.3)

The solution is sought in the form of a 1D harmonic planar wave as a solution of the previous differential equation of motion:

$$\begin{aligned} u(x,t)=U\,\exp (\uplambda t-i(k_{1}\mathrm{x})) \end{aligned}$$
(A.4)

Inserting the harmonic planar wave (A.4) into the equilibrium equation (A.3) leads to

$$\begin{aligned} \begin{aligned}&C_{{11}}^{{\hom }} \frac{{\partial ^{2} u}}{{\partial x^{2} }} + \eta _{{11}}^{{\hom }} \frac{{\partial ^{3} u}}{{\partial t\partial x^{2} }} + \int _{0}^{t} {C_{{11}} (t - s)} \frac{{\partial ^{3} u}}{{\partial x^{2} \partial t}}(s)\mathrm{d}s = \rho ^{*} \ddot{u} \\&\quad = C_{{11}}^{{\hom }} \left( { - k_{1}^{2} \exp ^{{\left( {i\,\lambda t - k_{1}^{{}} x} \right) }} } \right) + \eta _{{11}}^{{\hom }} \left( { - \lambda k_{1}^{2} \exp ^{{\left( {i\,\lambda t - k_{1}^{{}} x} \right) }} } \right) \\&\qquad + \int _{0}^{t} {C_{{11}} (t - s)} \left( { - \lambda k_{1}^{2} \exp ^{{\left( {i\,\lambda s - k_{1}^{{}} x} \right) }} } \right) \mathrm{d}s = \rho ^{*} \left( {\lambda ^{2} \exp ^{{\left( {i\,\lambda t - k_{1}^{{}} x} \right) }} } \right) \end{aligned} \end{aligned}$$
(A.5)

The kernel \(\hbox {C}_{11}(\mathrm{t}-\mathrm{s})\) in Eq. (A.5) is interpolated as \(C_{11} (t-s)=A\exp \left( {b\left( {t-s} \right) } \right) \), then the characteristic equation is written as follows:

$$\begin{aligned}&C_{11}^{\hom } \left( {-k_{1}^{2} \exp ^{\left( {i\,\lambda t-k_{1} x} \right) }} \right) +\eta _{11}^{\hom } \left( {-\lambda k_{1}^{2} \exp ^{\left( {i\,\lambda t-k_{1} x} \right) }} \right) \nonumber \\&\qquad +\int _0^t {A\left( {\exp ^{\left( {b\left( {t-s} \right) } \right) }} \right) } \left( {-\lambda k_{1}^{2} \exp ^{\left( {i\,\lambda s-k_{1} x} \right) }} \right) \mathrm{d}s=\rho ^{*}\left( {\lambda ^{2}\exp ^{\left( {i\,\lambda t-k_{1} x} \right) }} \right) \nonumber \\&\quad =C_{11}^{\hom } \left( {-k_{1}^{2} \exp ^{\left( {i\,\lambda t} \right) }} \right) +\eta _{11}^{\hom } \left( {-\lambda k_{1}^{2} \exp ^{\left( {i\,\lambda t} \right) }} \right) -\lambda k_{1}^{2} A\exp ^{\left( {bt} \right) }\int _0^t {\left( {\exp ^{\left( {-b\left( s \right) +i\,\lambda s} \right) }} \right) } \mathrm{d}s=\rho ^{*}\left( {\lambda ^{2}\exp ^{\left( {i\,\lambda t} \right) }} \right) \nonumber \\&\quad =C_{11}^{\hom } \left( {-k_{1}^{2} } \right) +\eta _{11}^{\hom } \left( {-\lambda k_{1}^{2} } \right) -\frac{\lambda k_{1}^{2} A}{-b+i\,\lambda }\left( {\exp ^{\left( {-b\left( t \right) } \right) }} \right) \mathrm{d}s=\rho ^{*}\left( {\lambda ^{2}} \right) \end{aligned}$$
(A.6)

A Taylor expansion of \(\exp ^{\left( {-b\left( t \right) } \right) }\) is done up to the second order:

$$\begin{aligned} = C_{{11}}^{{\hom }} \left( { - k_{1}^{2} } \right) + \eta _{{11}}^{{\hom }} \left( { - \lambda k_{1}^{2} } \right) - \frac{{\lambda k_{1}^{2} A}}{{ - b + i\,\lambda }}\left( {1 + \left( { - bt} \right) + \frac{{\left( { - bt} \right) ^{2} }}{2}} \right) \mathrm{d}s = \rho ^{*} \left( {\lambda ^{2} } \right) \end{aligned}$$
(A.7)

Equation (A.7) represents the characteristic equation describing the dispersion of longitudinal waves taking into account the long-memory effect.

Appendix B: Determination of the creep function of the homogenized medium and comparison with the response of the heterogeneous medium

We expose a mathematical formulation of the effective creep function for the homogenized Kelvin–Voigt medium under shear stress. In this model, we take a general 2D viscoelastic medium of Kelvin–Voigt type subjected to a shear constant stress. The general constitutive law writes in 2D

$$\begin{aligned} \left[ {{\begin{array}{c} {\sigma _{xx} } \\ {\sigma _{yy} } \\ {\sigma _{xy} } \\ \end{array} }} \right] =\left( {{\begin{array}{ccc} {\lambda +2\mu } &{} \mu &{} 0 \\ \mu &{} {\lambda +2\mu } &{} 0 \\ 0 &{} 0 &{} {2\mu } \\ \end{array} }} \right) \left( {{\begin{array}{c} {\varepsilon _{\mathrm{xx}} } \\ {\varepsilon _{\mathrm{yy}} } \\ {\varepsilon _{\mathrm{xy}} } \\ \end{array} }} \right) +\left( {{\begin{array}{ccc} {\eta _{v} +2\eta _{s} } &{} {\eta _{s} } &{} 0 \\ {\eta _{s} } &{} {\eta _{v} +2\eta _{s} } &{} 0 \\ 0 &{} 0 &{} {2\eta _{s} } \\ \end{array} }} \right) \left( {{\begin{array}{c} {\dot{{\varepsilon }}_{\mathrm{xx}} } \\ {\dot{{\varepsilon }}_{\mathrm{yy}} } \\ {\dot{{\varepsilon }}_{\mathrm{xy}} } \\ \end{array} }} \right) \end{aligned}$$
(B.1)

where \(\lambda \), \(\mu \) are the two lame coefficients, and \(\eta _{v}\), \(\eta _{s}\) the volume and shear viscosity, respectively. Under a constant applied stress, we obtain the corresponding creep function and then the corresponding viscosity.

When a constant shear stress is applied, the deformation – the creep function - expresses as:

$$\begin{aligned} \sigma _{\mathrm{xx}}^{0} ={{\textit{\textbf{E}}}}\,\varepsilon _{xx} +\eta _{s} \,\dot{{\varepsilon }}_{xx} \,\,\Rightarrow \varepsilon _{xx} =\frac{\sigma _{\mathrm{xx}}^{0} }{{{\textit{\textbf{E}}}}}\left( {1-\text{ e}^{-\frac{{{\textit{\textbf{E}}}}}{\eta _{s} }\text{ t }}} \right) \end{aligned}$$
(B.2)

where \({{\textit{\textbf{E}}}}\) is the elastic Young modulus, and \(\eta _{s}\) is the shear viscosity. The structure under investigation is the tendon microstructure presented into details in Sect. 4.

Fig. 14
figure 14

Comparison of the creep function between the homogenized model (blue line) and the response of the heterogeneous medium (red line) (color figure online)

Figure 14 shows that the creep response of the homogenized medium is close to that of the initially heterogeneous medium; the difference increases when time elapses.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Reda, H., Zaydana, K., Ghayth, N. et al. Wave propagation in viscoelastic composite materials with long-memory effects. Continuum Mech. Thermodyn. 33, 269–287 (2021). https://doi.org/10.1007/s00161-020-00902-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00161-020-00902-3

Keywords

Navigation