Skip to main content
Log in

On the Kinetic Mechanism of Ignition of Diborane Mixtures with Air

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

A reaction model is proposed for calculating the process of ignition of diborane mixtures with air. The model summarizes the previously developed kinetic models of oxidation of diborane, boron, as well as lower oxides and hydroxides of boron. A distinctive feature of the model is the use of physically grounded rate constants of the most important reaction channels, which were either computed or derived from available experimental data. The mechanism is tested against experimental data on the diborane ignition delay and flame velocity in diborane–oxygen and diborane–air mixtures. The results predicted by the proposed model are found to be in reasonable agreement with experimental data. The model can be used for engineering calculations and also for numerical simulations of diborane combustion in lean and stoichiometric mixtures with air.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

REFERENCES

  1. T. Onak, Organoborane Chemistry (Academic Press, New York, 1975).

  2. B. M. Mikhailov, Chemistry of Boron Hydrides(Nauka, Moscow, 1967) [in Russian].

  3. J. Yu, J. A. Boatz, X. Tang, Z. A. Hicks, K. H. Bowen, and S. L. Anderson, “Borane–Aluminum Surface Interactions: Enhanced Fracturing and Generation of Boron–Aluminum Core-Shell Nanoparticles," J. Phys. Chem. C 121, 14176–14190 (2017).

  4. E. N. Shubina, P. A. Karasev, A. I. Titov, et al., “Effect of Diborane Addition on the Properties of PECVD Carbon Films," Pisma Zh. Tekh. Fiz. 43 (1), 80–88 (2017).

  5. W. B. Kaufman, J. B. Gibbs, and J. R. Branstetter,Preliminary Investigation of Combustion of Diborane in a Turbojet Combustor (NACA RM E52L15, Washington, 1957).

  6. Energetic Fuels for Aviation and Rocket Engines, Ed. by L. S. Yanovskii (Fizmatlit, Moscow, 2009) [in Russian].

  7. Organometallic Chemistry Research Perspectives, Ed. by R. P. Irwing (Nova Publ., New York, 2007).

  8. G. M. Simons, Valkyrie: The North American XB-70. The USA’s III-fated Supersonic Heavy Bomber (Pen and Sword Aviation, 2014).

  9. X. Zhang, L. Kam, and T. J. Williams, “Dehydrogenation of Ammonia Borane through the Third Equivalent of Hydrogen," Dalton Trans.45 (18), 7672–7677 (2016).

  10. S. G. Shore and K. W. Boddeker, “Large Scale Synthesis of H2B(NH\(_{3})_{2}\) + BH\(_{4}^{ -}\) and H3NBH3," Inorg. Chem. 3(6), 914–915 (1964).

  11. H. Y. Choi, S. J. Park, D. Seo, J. M. Baek, H. D. Song, S. J. Jung, K. J. Lee, and Y. L. Kim, “Low-Temperature Synthesis of Ammonia Borane Using Diborane and Ammonia," Int. J. Hydr. Energy 40(35), 11779–11784 (2015).

  12. W. B. Shaub and M. C. Lin, “Predictive Modeling of Diborane Oxidation," in Proc. 10th Mater. Res. Symp. on Characterization of High-Temperature Vapors and Gases, 1249–1261 (1979). (NBS Special Publ. No. 561.)

  13. R. A. Yetter, H. Rabitz, F. L. Dryer, R. C. Brown, and C. E. Kolb, “Kinetic of High-Temperature B/O/H/C Chemistry," Combust. Flame83 (1/2), 43–62 (1991).

  14. L. Pasternack, “Gas-Phase Modeling of Homogeneous Boron/Oxygen/Hydrogen /Carbon Combustion," Combust. Flame90 (3/4), 259–268 (1992).

  15. V. G. Slutskii, E. S. Severin, and L. A. Polenov, “Ab initio Study of Reactions in the H3BO3/B2O3/H2O System," Khim. Fiz. 26 (11), 22–25 (2007).

  16. L. Pasternack, R. J. Balls, and H. H. Nelson, “Study of Reactions of BH3 with CO, NO, O2, C2H4, and H2O Using Diode Laser Absorption," J. Phys. Chem. 92 (5), 1200–1203 (1988).

  17. N. L. Garland, C. T. Stanton, J. W. Fleming, A. P. Baronavski, and H. H. Nelson, “BH Reaction Kinetics Studied with a High-Temperature Reactor, J. Phys. Chem. 94 (12), 4952–4956 (1990).

  18. N. L. Garland, C. T. Stanton, and H. H. Nelson, “Temperature Dependence of the Kinetics of the Reaction Boron Monoxide + Oxygen," J. Phys. Chem. 95 (22), 8741–8744 (1991).

  19. J. K. Rice, N. J. Caldwell, and H. H. Nelson, “Gas-Phase Reaction Kinetics of BH," J. Phys. Chem. 93 (9), 3600–3604 (1989).

  20. R. C. Oldenborg and S. L. Baughcum, “Gas-Phase Oxidation of Atomic Boron and Boron Monoxide," AIP Conf. Proc. 146, 562–563 (1986).

  21. J. V. Michael, J. W. Sutherland, L. B. Harding, and A. F. Wagner, “Initiation in H2/O2: Rate Constants for H2 + O2 = H + HO2 at High Temperature," Proc. Combust. Inst. 28 (2), 1471–1478 (2000).

  22. V. G. Slutskii, “Mechanism of Combustion of Boron-Containing Compounds with a Cellular Structure in Water Vapor and Oxygen-Containing Media," Doct. Dissertation in Phys.-Math. Sci (Inst. Chem. Phys., Moscow, 1997).

  23. G. B. Skinner and A. D. Snyder, “Mechanism and Chemical Inhibition of the Diborane–Oxygen Reaction," Progr. Astronaut. Rocketry15, 345–374 (1964).

  24. L. V. Gurvich, V. S. Iorish, D. V. Chekhovskoi, and V. S. Yungman,IVTANTHERMO—A Thermodynamic Database and Software System for the Personal Computer. User’s Guide (CRC Press, Boca Raton, 1993).

  25. A. Burcat and B. Ruscic, “Third Millennium Ideal Gas and Condensed Phase Thermochemical Database for Combustion with Update from Active Thermochemical Tables," Tech. Report (Argonne Nat.Lab., 2005).

  26. M. W. Chase, NIST-JANAF Thermochemical Tables. 2 Volume-Set (Am. Inst. Physics, 1998). (J. Phys. Chem. Ref. Data Monographs.)

  27. K. Sato, N. Kanda, T. Ogata, and Y. Kumashiro, “Structures of the Main Precursors and Initial Decomposition Products of Diborane Chemical Vapor Deposition: An Experimental and ab initio Molecular Orbital Study," Chem. Phys. Lett. 325 (4), 453–456 (2000).

  28. R. P. Clarke and R. N. Pease, “A Preliminary Study of the Kinetics of Pyrolysis of Diborane," J. Am. Chem. Soc. 73, 2132–2134 (1951).

  29. L. H. Long, “The Mechanisms of Thermal Decomposition of Diborane and Interconversion of the Boranes," J. Inorg. Nucl. Chem.32 (4), 1097–1115 (1970).

  30. J. Ma, J. C. Richley, D. R. W. Davies, A. Cheesman, M. N. R. Ashfold, and Y. A. Mankelevich, “Spectroscopic and Modeling Investigations of the Gas-Phase Chemistry and Composition in Microwave Plasma Activated B2H6/Ar/H2Mixtures," J. Phys. Chem. A 114 (7), 2447–2463 (2010).

  31. H. Umemoto, T. Kanemitsu, and A. Tanaka, “Production of B Atoms and BH Radicals from B2H6/He/H2 Mixtures Activated on Heated W Wires," J. Phys. Chem. A 118(28), 5156–5163 (2014).

  32. D. W. Comerford, A. Cheesman, T. P. F. Carpenter, D. M. E. Davies, N. A. Fox, R. S. Sage, J. A. Smith, M. N. R. Ashfold, and Y. A. Mankelevich, “Experimental and Modeling Studies of B Atom Number Density Distributions in Hot Filament Activated B2H6/H2 and B2H6/CH4/H2 Gas Mixtures," J. Phys. Chem. A 110 (9), 2868–2875 (2006).

  33. J. Troe, “Theory of Thermal Unimolecular Reactions at Low Pressures. I. Solutions of the Master Equation," J. Chem. Phys.66 (11), 4745–4757 (1977).

  34. R. E. McCoy and S. H. Bauer, “Energetics of the Boranes. I. The Heats of Reaction of Diborane with the Methylamines, and of Tetramethyldiborane with Trimethylamine; the Dissociation Energy of Diborane," J. Am. Chem. Soc. 78 (10), 2061–2065 (1956).

  35. M. E. Garabedian and S. W. Benson, “The Kinetics of the Decomposition of BH3CO and the Bond Dissociation Energy of B2H6," J. Am. Chem. Soc. 86(2), 176–182 (1964).

  36. A. B. Burg, Y-Ch. Fu, “Kinetics of the Decomposition of BH3PF3 and Related Compounds. A Revised Estimate of the Dissociation Energy of Diborane," J. Am. Chem. Soc.88 (6), 1147–1151 (1966).

  37. T. P. Fehlner and G. W. Mappes, “Mass Spectrometric Investigation of the Low-Pressure Pyrolysis of Borane Carbonyl. Bond Dissociation Energy of Diborane," J. Phys. Chem. 73 (4), 873–882 (1969).

  38. Physical and Chemical Processes in Gas Dynamics: Computerized Reference Book, Vol. 1: Dynamics of Physical and Chemical Processes in Gases and Plasmas, Ed. by G. G. Chernyi and S. A. Losev (Izd. Mosk. Gos. Univ., Moscow, 1995) [in Russian].

  39. G. Z. Whitten and B. S. Rabinovitch, “Accurate and Facile Approximation for Vibrational Energy-Level Sums," J. Chem. Phys.38 (10), 2466–2473 (1963).

  40. I. A. Semiokhin, B. V. Strakhov, and A. I. Osipov, Kinetics of Chemical Reactions (Izd. Mosk. Gos. Univ., Moscow, 1995) [in Russian].

  41. G. W. Mappes, S. A. Fridmann, and T. P. Fehlner, “The Absolute Rate of Association of Borane Molecules," J. Phys. Chem.74 (18), 3307–3316 (1970).

  42. M. D. Carabine and R. G. W. Norrish, “The Oxidation of Diborane," Proc. Roy. Soc. London, Ser. A 296(1444), 1–23 (1967).

  43. E. Gobett and J. W. Linnett, “The Reaction between Diborane and Oxygen," J. Chem. Soc. 2893–2907 (1962).

  44. W. G. Berl, “A Brief Review on the Combustion of Boron Hydrides," Progr. Astronaut. Rocketry 15, 311–326 (1964).

  45. W. Roth and W. H. Bauer, “Combustion of Diborane-Oxygen Mixtures at the Second Explosion Limit," Symp. (Int.) Combust. 5(1), 710–717 (1955).

  46. J. A. Harrison, R. F. Meads, and L. F. Phillips, “Kinetics of Reactions of BH with NO and C2H4," Chem. Phys. Lett. 150 (3-4), 299–302 (1988).

  47. C. T. Stanton, N. L. Garland, and H. H. Nelson, “Temperature Dependence of the Kinetics of the Reaction Boron Monoxide + Oxygen," J. Phys. Chem. 95 (22), 8741–8744 (1991).

  48. R. A. Kendall, T. H. Dunning (Jr.), and R. J. Harrison, “Electron Affinities of the First-Row Atoms Revisited. Systematic Basis Sets and Wave Functions," J. Chem. Phys. 96 (9), 6796–6806 (1992).

  49. Thermodynamic Properties of Individual Substances: Reference Book, Ed. by L. V. Gurvich et al. (Nauka, Moscow, 1981), Vol. III, Book 1 [in Russian].

  50. A. D. Rusin and V. M. Tatevskii, “Nature of Green Glowing and Composition of Products of Boron Combustion at a Temperature of 3300 K," Dokl. Akad. Nauk SSSR 7(139) (3), 630–633 (1961).

  51. H. Wolfgard, A. Clark, and M. Wempi, “Characteristics of the Diborane Flame," in Heterogeneous Combustion, translated from English, Ed. by A. V. Il’inskii (Mir, Moscow, 1967, pp. 240–253).

  52. D. A. Yagodnikov, “Experimental Study of Combustion of a Cloud of Boron Particles in Air," Fiz. Goreniya Vzryva 46(4), 64–71 (2010) [Combust., Explos., Shock Waves 46 (4), 426–432 (2010)].

  53. A. S. Sharipov and A. M. Starik, “Quantum Chemical Study of the Reactions of Al, AlO and AlOH with H2O2," Chem. Phys. 465-466, 9–16 (2016).

  54. A. M. Starik et al., “Kinetic Analysis of \(n\)-Decane–Hydrogen Blend Combustion in Premixed and Non-Premixed Supersonic Flows," Combust. Theory Modell. 20 (1), 99–130 (2016).

  55. T. Schwabe and S. Grimme, “Double-Hybrid Density Functionals with Long-Range Dispersion Corrections: Higher Accuracy and Extended Applicability," Phys. Chem. Chem. Phys. 9 (26), 3397–3406 (2007).

  56. R. A. Svehla, “Estimated Viscosities and Thermal Conductivities of Gases at High Temperatures," NASA-TR-R-132 (Lewis Res. Center, Cleavland, 1962).

  57. A. S. Sharipov et al., “Theoretical Evaluation of Diffusion Coefficients of (Al2O\(_{3})_{n}\) Clusters in Different Bath Gases," Eur. Phys. J. D68 (4), 99–107 (2014).

  58. M. I. Shakhporonov, Introduction into the Molecular Theory of Solutions (Gos. Izd. Tekh.-Teor. Lit., Moscow, 1956) [in Russian].

  59. N. S. Titova, S. A. Torokhov, and A. M. Starik, “On Kinetic Mechanisms of \(n\)-Decane Oxidation," Fiz. Goreniya Vzryva 47 (2), 3–11 (2011) [Combust., Explos., Shock Waves 47 (2), 129–146 (2011)].

  60. H. G. Wolfhard, A. H. Clark, M. Vanpee, “Characteristics of Diborane Flames," Progr. Astronaut. Rocketry 15, 327–343 (1964).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. M. Savel’ev.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Savel’ev, A.M., Kuleshov, P.S., Lukhovitskii, B.I. et al. On the Kinetic Mechanism of Ignition of Diborane Mixtures with Air. Combust Explos Shock Waves 56, 249–266 (2020). https://doi.org/10.1134/S0010508220030016

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0010508220030016

Keywords

Navigation