Skip to main content
Log in

Gas Bubble Dynamics in a Fluid with Chemical Reactions

  • Published:
Combustion, Explosion, and Shock Waves Aims and scope

Abstract

The formation and dynamics of a spherical gas bubble (from \(\approx1\)nm to 1 \(\mu\)m) in the liquid gasification zone of a solid high-energy material at high pressures is theoretically investigated. A simple model is proposed in which all thermodynamic parameters with the exception of fluid pressure and fluid velocity are independent of spatial variables. The stationary radius of bubbles decreases as pressure rises, but the stationary state is unstable: large bubbles grow relatively slowly and a thermal explosion subsequently occurs in them, with small bubbles quickly vanishing.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

REFERENCES

  1. L. K. Gusachenko and V. E. Zarko, “Combustion Models for Energetic Materials with Completely Gaseous Reaction Products," Fiz. Goreniya Vzryva 41 (1), 24–40 (2005) [Combust., Expl., Shock Waves 41 (1), 20–34 (2005)].

  2. S. Apte and V. Yang, “Unsteady Flow Evolution and Combustion Dynamics of Homogeneous Solid Propellant in Rocket Motors," Combust. Flame 131, 110–131 (2002).

  3. W. Cai, F. Ma, and V. Yang, “Two-Phase VorticoAcoustic Flow Interactions in Solid-Propellant Rocket Motors," J. Propul. Power19 (3), 385–396 (2003).

  4. L. K. Gusachenko and V. E. Zarko, “Erosive Burning. Modeling Problems," Fiz. Goreniya Vzryva 43 (3), 47–58 (2007) [Combust., Expl., Shock Waves 43 (3), 286–296 (2007)].

  5. V. N. Vilyunov and A. A. Dvoryashin, “Combustion of the H Powder in a Gas Flow," Fiz. Goreniya Vzryva 7 (1), 45–51 (2007).

  6. N. Kubota, Propellant and Explosives: Thermochemical Aspects of Combustion (Wiley-VCH Verlag GmbH & Co. KGaA, Veinheim, Germany, 2002).

  7. B. V. Novozhilov, Unsteady Combustion of Solid Rocket Propellants (Nauka, Moscow, 1973). (Transl. AFSC FTD-MD-24-317-74.)

  8. V. E. Annikov and B. N. Kondrikov, “Effect of Charge Diameter on the Burning Rate of Explosives," Fiz. Goreniya Vzryva4 (3), 350–357 (1968) [Combust., Expl., Shock Waves4 (3), 197–201 (1968)].

  9. V. V. Aleksandrov, A. V. Boldyreva, V. V. Boldyrev, and R. K.‘Tukhtaev, “Combustion of DINA at Atmospheric Pressure," Fiz. Goreniya Vzryva 9 (1), 140–142 (1973) [Combust., Expl., Shock Waves 9 (1), 117–119 (1973)].

  10. K. O. Sabdenov and M. Erzada, “Determination of the Transfer Coefficient of Natural Turbulence Occurring near the Solid-Propellant Gasification Zone. I. Two-Phase Model of the Gasification Zone," Fiz. Goreniya Vzryva 53 (5), 70–82 (2017) [Combust., Expl., Shock Waves 53 (5), 554–564 (2017)].

  11. K. O. Sabdenov and M. Erzada, “Anomalous Impact of Turbulence on the Burning Rate of Solid High-Energy Materials," Khim. Fiz.37 (10), 51–59 (2018).

  12. K. O. Sabdenov and M. Erzada, “Simulation of Combustion of Solid High-Energy Materials with Account for Erosive Effects," Fiz. Goreniya Vzryva 55 (5), 38–49 (2019) [Combust., Expl., Shock Waves 55 (5), 156–166 (2019)].

  13. A. A. Vasil’ev, V. K. Kedrinskii, and S. P. Taratuta, “Dynamics of a Single Bubble with a Chemically Active Gas," Fiz. Goreniya Vzryva 34 (2), 121–124 (1998) [Combust., Expl., Shock Waves 34 (2), 226–229 (1998)].

  14. V. K. Kedrinskii, P. A. Fomin, and S. P. Taratuta, “Dynamics of a Single Bubble in a Liquid in the Presence of Chemical Reactions and Interphase Heat and Mass Exchange," Prikl. Mekh. Tekh. Fiz.40 (2), 119–127 (1999) [J. Appl. Mech. Tech. Phys.40 (2), 292–299 (1999)].

  15. F. B. Nagiev and N. S. Khabeev, “Dynamics of Soluble Gas Bubbles," Mekh. Zhidk. Gaza, No. 6, 52–59 [Fluid Dyn.20 (6), 877–883 (1985)].

  16. E. V. Mikheeva and N. S. Khabeev, “Radial Oscillations of Vapor Bubbles in Solutions," Mekh. Zhidk. Gaza, No. 3, 108–113 [Fluid Dyn. 24 (3), 416–421 (1989)].

  17. O. Knacke and I. N. Stranski, “The Mechanism of Evaporation," Prog. Met. Phys. 6, 181–235 (1956).

  18. N. N. Kalitkin, Numerical Methods (Nauka, Moscow, 1978) [in Russian].

  19. E. A. Smorodov, “Dynamics of a Cavitation Bubble in a Polar Fluid," Pis’ma Zh. Tekh. Fiz. 32 (8), 34–40 (2006).

  20. B. M. Dorofeev and V. I. Volkova, “The Dynamics of Vapor Bubble Growth in Boiling Owing to Excess Enthalpy of Surrounding Superheated Liquid," High Temp. 46 (6), 861–866 (2008).

  21. Feng Cheng, Weixi Ji, Chenhao Qian, and Jie Xu, “Cavitation Bubbles Dynamics and Cavitation Erosion in Water Jet," Results Phys., No. 9, 1585–1593 (2018).

  22. Nobuyuki Fujisawa, Toshihiro Horiuchi, Kei Fujisawa, and Takayuki Yamagata, “Experimental Observation of the Erosion Pattern, Pits, and Shockwave Formation in a Cavitating Jet," Wear 418(419), 265–272 (2019).

  23. M. Volmer, Kinetik der Phasenbildung (T. Steinkopff, 1939).

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. O. Sabdenov.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sabdenov, K.O. Gas Bubble Dynamics in a Fluid with Chemical Reactions. Combust Explos Shock Waves 56, 271–277 (2020). https://doi.org/10.1134/S001050822003003X

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S001050822003003X

Keywords

Navigation