Skip to main content
Log in

Branched architecture of fucoidan characterized by dynamic and static light scattering

  • Original Contribution
  • Published:
Colloid and Polymer Science Aims and scope Submit manuscript

Abstract

Branched architecture of fucoidans (sulfated fucose-rich polysaccharides) gained considerable interest in recent years in view of the effect of this branching on fucoidan’s biological activity. The aim of this work was to characterize the branching architecture of the pristine and hydrolyzed fucoidan macromolecules of the marine seaweed Fucus vesiculosus. We studied the influence of the duration of acidic hydrolysis on the fucoidan macromolecules. The structure-sensitive ratios of macromolecular radii, obtained by dynamic and static (SLS) light scattering, and capillary viscometry corresponded to spherical form of the macromolecules, indicating their branched architecture. The structure-sensitive ratios were analyzed with respect to the molecular weight distributions obtained by size-exclusion chromatography. The Kratky representation of the angular dependences of SLS intensity provided a spectacular evidence for the fucoidans’ branching. For the first time, the fucoidans’ branching was characterized quantitatively by fitting the scattering form factor developed for hyperbranched macromolecules. Under acidic hydrolysis, the molecular mass and size of the fucoidan macromolecules decreased, but the globular form of macromolecules remained unchanged. Upon increasing the time of the acidic hydrolysis, the ζ-potential of the fucoidans changed from − 14 to − 27 mV. The hydrolyzed fucoidans, in turn, exhibited pronounced polyelectrolyte expansion in aqueous solutions when compared with the unhydrolyzed one.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ale MT, Meyer AS (2013) Fucoidans from brown seaweeds: an update on structures, extraction techniques and use of enzymes as tools for structural elucidation. RSC Adv 3:8131–8141. https://doi.org/10.1039/c3ra23373a

    Article  CAS  Google Scholar 

  2. Li B, Lu F, Wei X, Zhao R (2008) Fucoidan: structure and bioactivity. Molecules 13:1671–1695. https://doi.org/10.3390/molecules13081671

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Trinchero J, Ponce NMA, Cordoba OL et al (2009) Antiretroviral activity of fucoidans extracted from the brown seaweed Adenocystis utricularis. Phyther Res 23:707–712

    Article  CAS  Google Scholar 

  4. Pavliga SN, Kompanets GG, Tsygankov VY (2016) The experimental research (in vitro) of carrageenans and fucoidans to decrease activity of hantavirus. Food Environ Virol 8:120–124. https://doi.org/10.1007/s12560-016-9233-9

    Article  CAS  PubMed  Google Scholar 

  5. Marudhupandi T, Kumar TTA (2013) Antibacterial effect of fucoidan from Sargassum wightii against the chosen human bacterial pathogens. Int Curr Pharm J 2:156–158. https://doi.org/10.3329/icpj.v2i10.16408

    Article  CAS  Google Scholar 

  6. Dürig J, Bruhn T, Zurborn KH, Gutensohn K, Bruhn HD, Béress L (1997) Anticoagulant fucoidan fractions from Fucus vesiculosus induce platelet activation in vitro. Thromb Res 85:479–491. https://doi.org/10.1016/S0049-3848(97)00037-6

    Article  PubMed  Google Scholar 

  7. Jin W, Zhang Q, Wang J, Zhang W (2013) A comparative study of the anticoagulant activities of eleven fucoidans. Carbohydr Polym 91:1–6. https://doi.org/10.1016/j.carbpol.2012.07.067

    Article  CAS  PubMed  Google Scholar 

  8. Kim MH, Joo HG (2008) Immunostimulatory effects of fucoidan on bone marrow-derived dendritic cells. Immunol Lett 115:138–143. https://doi.org/10.1016/j.imlet.2007.10.016

    Article  CAS  PubMed  Google Scholar 

  9. Cho M, Lee DJ, Kim JK, You S (2014) Molecular characterization and immunomodulatory activity of sulfated fucans from Agarum cribrosum. Carbohydr Polym 113:507–514. https://doi.org/10.1016/j.carbpol.2014.07.055

    Article  CAS  PubMed  Google Scholar 

  10. Li X j, Ye Q f (2015) Fucoidan reduces inflammatory response in a rat model of hepatic ischemia-reperfusion injury. Can J Physiol Pharmacol 93:999–1005. https://doi.org/10.1139/cjpp-2015-0120

    Article  CAS  PubMed  Google Scholar 

  11. Senthilkumar K, Manivasagan P, Venkatesan J, Kim SK (2013) Brown seaweed fucoidan: biological activity and apoptosis, growth signaling mechanism in cancer. Int J Biol Macromol 60:366–374. https://doi.org/10.1016/j.ijbiomac.2013.06.030

    Article  CAS  PubMed  Google Scholar 

  12. Kwak JY (2014) Fucoidan as a marine anticancer agent in preclinical development. Mar Drugs 12:851–870. https://doi.org/10.3390/md12020851

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Zhurishkina EV, Stepanov SI, Ayrapetyan ON, Skorik YA, Vlasova EN, Kruchina-Bogdanov IV, Lebedev DV, Kulminskaya AA, Lapina IM (2019) The effect of polydisperse fucoidans from Fucus vesiculosus on Hep G2 and Chang liver cells. Bioact Carbohydrates Diet Fibre 100209:100209. https://doi.org/10.1016/j.bcdf.2019.100209

    Article  CAS  Google Scholar 

  14. Oliveira C, Ferreira AS, Novoa-Carballal R, Nunes C, Pashkuleva I, Neves NM, Coimbra MA, Reis RL, Martins A, Silva TH (2017) The key role of sulfation and branching on fucoidan antitumor activity. Macromol Biosci 17:1–13. https://doi.org/10.1002/mabi.201600340

    Article  CAS  Google Scholar 

  15. Chang Y, Hu Y, Yu L, McClements DJ, Xu X, Liu G, Xue C (2016) Primary structure and chain conformation of fucoidan extracted from sea cucumber Holothuria tubulosa. Carbohydr Polym 136:1091–1097. https://doi.org/10.1016/j.carbpol.2015.10.016

    Article  CAS  PubMed  Google Scholar 

  16. Xu X, Xue C, Chang Y, Wang J, Jiang K (2016) Chain conformational and physicochemical properties of fucoidans from sea cucumber. Carbohydr Polym 152:433–440. https://doi.org/10.1016/j.carbpol.2016.06.093

    Article  CAS  PubMed  Google Scholar 

  17. Clément MJ, Tissot B, Chevolot L, Adjadj E, du Y, Curmi PA, Daniel R (2010) NMR characterization and molecular modeling of fucoidan showing the importance of oligosaccharide branching in its anticomplementary activity. Glycobiology 20:883–894. https://doi.org/10.1093/glycob/cwq046

    Article  CAS  PubMed  Google Scholar 

  18. Kopplin G, Rokstad AM, Mélida H, Bulone V, Skjåk-Bræk G, Aachmann FL (2018) Structural characterization of fucoidan from Laminaria hyperborea: assessment of coagulation and inflammatory properties and their structure-function relationship. ACS Appl Bio Mater 1:1880–1892. https://doi.org/10.1021/acsabm.8b00436

    Article  CAS  Google Scholar 

  19. Wei X, Cai L, Liu H, Tu H, Xu X, Zhou F, Zhang L (2019) Chain conformation and biological activities of hyperbranched fucoidan derived from brown algae and its desulfated derivative. Carbohydr Polym 208:86–96. https://doi.org/10.1016/j.carbpol.2018.12.060

    Article  CAS  PubMed  Google Scholar 

  20. Burchard W (1999) Solution properties of branched macromolecules. Adv Polym Sci 143:114–194

    Google Scholar 

  21. Bilan MI, Grachev AA, Shashkov AS, Nifantiev NE, Usov AI (2006) Structure of a fucoidan from the brown seaweed Fucus serratus L. Carbohydr Res 341:238–245. https://doi.org/10.1016/j.carres.2005.11.009

    Article  CAS  PubMed  Google Scholar 

  22. Skriptsova AV (2015) Fucoidans of brown algae: biosynthesis, localization, and physiological role in thallus. 41:145–156. https://doi.org/10.1134/S1063074015030098

  23. Galinsky G, Burchard W (1997) Starch fractions as examples for nonrandomly branched macromolecules. 4. Angular dependence in dynamic light scattering. Macromolecules 30:6966–6973. https://doi.org/10.1021/ma961776g

    Article  CAS  Google Scholar 

  24. Roger P, Bello-Perez LA, Colonna P (1999) Contribution of amylose and amylopectin to the light scattering behaviour of starches in aqueous solution. Polymer (Guildf) 40:6897–6909. https://doi.org/10.1016/S0032-3861(99)00051-8

    Article  CAS  Google Scholar 

  25. Bilan MI, Grachev AA, Shashkov AS, Kelly M, Sanderson CJ, Nifantiev NE, Usov AI (2010) Further studies on the composition and structure of a fucoidan preparation from the brown alga Saccharina latissima. Carbohydr Res 345:2038–2047. https://doi.org/10.1016/j.carres.2010.07.009

    Article  CAS  PubMed  Google Scholar 

  26. Yang C, Chung D, Shin IS, Lee HY, Kim JC, Lee YJ, You SG (2008) Effects of molecular weight and hydrolysis conditions on anticancer activity of fucoidans from sporophyll of Undaria pinnatifida. Int J Biol Macromol 43:433–437. https://doi.org/10.1016/j.ijbiomac.2008.08.006

    Article  CAS  PubMed  Google Scholar 

  27. Dodgson KS (1961) Determination of inorganic sulphate in studies on the enzymic and non-enzymic hydrolysis of carbohydrate and other sulphate esters. Biochem J 78:312–319. https://doi.org/10.1042/bj0780312

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Dische Z, Shettles LB, Osnos M (1949) New specific color reactions of hexoses and a spectrophotometric micromethod for their determination. Arch Biochem 22:169–184

    CAS  PubMed  Google Scholar 

  29. Gasilova ER, Aleksandrova GP (2017) Dilute solutions of compositionally heterogeneous κ-carrageenan studied by combined dynamic and static light scattering. Int J Polym Anal Charact 22:669–676. https://doi.org/10.1080/1023666X.2017.1366190

    Article  CAS  Google Scholar 

  30. Tsvetkov V., Eskin VE, Frenkel SY (1970) Structure of macromolecules in solutions, butterwort. London

  31. Yamakava H (1971) Modern theory of polymer solutions. Harper& Ro, New York

    Google Scholar 

  32. Burchard W (2008) Soft matter characterization. In: Borsali R, Pecora R (eds) Soft matter characterization. Springer, New York, pp 463–604

    Chapter  Google Scholar 

  33. Burchard W, Muller A (1995) Structure formation of surfactants in concentrated sulphuric acid: a light scattering study. Steinkopff Verlag

  34. Tsvetkov VN, Lavrenko PN, Bushin SV (1984) Hydrodynamic invariant of polymer molecules. J Polym Sci 22:3447–3480

    CAS  Google Scholar 

  35. Perevyazko I, Seiwert J, Schömer M, Frey H, Schubert US, Pavlov GM (2015) Hyperbranched poly (ethylene glycol) copolymers: absolute values of the molar mass, properties in dilute solution, and hydrodynamic homology. Macromolecules 48:5887–5898. https://doi.org/10.1021/acs.macromol.5b01020

    Article  CAS  Google Scholar 

  36. Burchard W (1977) Particle scattering factors of some branched polymers. Macromolecules 10:919–927. https://doi.org/10.1021/ma60059a008

    Article  CAS  Google Scholar 

  37. Crompton KE, Forsythe JS, Horne MK, Finkelstein DI, Knott RB (2009) Molecular level and microstructural characterisation of thermally sensitive chitosan hydrogels. Soft Matter 5:4704–4711. https://doi.org/10.1039/b907593c

    Article  CAS  Google Scholar 

  38. Burchard W (2004) Angular dependence of scattered light from hyperbranched structures in a good solvent. A fractal approach. Macromolecules 37:3841–3849. https://doi.org/10.1021/ma049950l

    Article  CAS  Google Scholar 

Download references

Acknowledgments

The authors are grateful to our colleagues from the Institute of Macromolecular Compounds of the Russian Academy of Sciences, St. Petersburg, E.N. Vlasova for recording the FTIR spectra of fucoidans; Dr. N.V. Dubashynskaya for measuring the ζ-potential; and E.N. Pavlova for measuring the HPSEC chromatograms.

Funding

This study was financially supported by the Russian Ministry of Education and Science via a State program AAA-A16-116071450046-9.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ekaterina R. Gasilova.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 1123 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gasilova, E.R., Lapina, I.M., Kulminskaya, A.A. et al. Branched architecture of fucoidan characterized by dynamic and static light scattering. Colloid Polym Sci 298, 1349–1359 (2020). https://doi.org/10.1007/s00396-020-04706-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00396-020-04706-4

Keywords

Navigation