Skip to main content
Log in

Controllably Growing Topologies in One-shot RAFT Polymerization via Macro-latent Monomer Strategy

  • Article
  • Published:
Chinese Journal of Polymer Science Aims and scope Submit manuscript

Abstract

The controlled and efficient synthesis of polymers with tailored topologies is challenging but important for exploring structure/property research. Herein, we proposed a concept of macro-latent monomer to achieve the controlled growth of polymer topologies. The macro-latent monomer was installed by a dynamic furan/maleimide covalent bond at the chain terminal. One-shot reversible addition-fragmentation chain transfer (RAFT) polymerization of styrene and the macro-latent monomer created controlled growth of polymer topologies. Low temperature such as 40 °C could not activate the macro-latent monomer and thus the polymerization created the homo-polystyrene. By contrast, high temperature of ∼110 °C activated the macro-latent monomer, and a maleimide-terminated macro-monomer was released via the retro-Diels Alder reaction. This macro-monomer immediately joined the cross polymerization with styrene and thus produced the side chains. By delicately manipulating the polymerization temperature, the predetermined placement of the macro-latent monomer-derived polymeric side-chains created controllably growing topologies, including star-, π-shaped, and density-variable grafting copolymers. This work paved a new way for creating on-demand topologies and would greatly enrich the topology synthesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Huang, Z. H.; Zhou, Y. Y.; Wang, Z. M.; Li, Y.; Zhang, W.; Zhou, N. C.; Zhang, Z. B.; Zhu, X. L. Recent advances of CuAAC click reaction in building cyclic polymer. Chinese J. Polym. Sci.2017, 35, 317–341.

    CAS  Google Scholar 

  2. Tang, H.; Tang, J.; Shen, Y.; Guo, W. X.; Zhou, M.; Wang, R. H.; Jiang, N.; Gan, Z. H.; Yu, Q. S. Comb-like poly(N-(2-hydroxypropyl) methacrylamide) doxorubicin conjugates: the influence of polymer architecture and composition on the biological properties. Chinese J. Polym. Sci.2018, 36, 1225–1238.

    CAS  Google Scholar 

  3. Endo, K. Synthesis and properties of cyclic polymers. Adv. Polym. Sci.2008, 217, 121–183.

    CAS  Google Scholar 

  4. Hoskins, J. N.; Grayson, S. M. Synthesis and degradation behavior of cyclic poly(ε-caprolactone). Macromolecules2009, 42, 6406–6413.

    CAS  Google Scholar 

  5. Kricheldorf, H. R. Cyclic polymers: synthetic strategies and physical properties. J. Polym. Sci., Part A: Polym. Chem.2010, 48, 251–284.

    CAS  Google Scholar 

  6. Yamamoto, T.; Tezuka, Y. Topological polymer chemistry: a cyclic approach toward novel polymer properties and functions. Polym. Chem.2011, 2, 1930–1941.

    CAS  Google Scholar 

  7. Qiu, X. P.; Tanaka, F.; Winnik, F. M. Temperature-induced phase transition of well-defined cyclic poly(N-isopropylacrylamide)s in aqueous solution. Macromolecules2007, 40, 7069–7071.

    CAS  Google Scholar 

  8. Lee, C. U.; Li, A.; Ghale, K.; Zhang, D. Crystallization and melting behaviors of cyclic and linear polypeptoids with alkyl side chains. Macromolecules2013, 46, 8213–8223.

    CAS  Google Scholar 

  9. Shin, E. J.; Jeong, W.; Brown, H. A.; Koo, B. J.; Hedrick, J. L.; Waymouth, R. M. Crystallization of cyclic polymers: synthesis and crystallization behavior of high molecular weight cyclic poly(ε-caprolactone)s. Macromolecules2011, 44, 2773–2779.

    CAS  Google Scholar 

  10. Chen, R.; Nossarev, G. G.; Hogen-Esch, T. E. Synthesis and thermal and spectroscopic properties of macrocyclic vinyl aromatic polymers. J. Polym. Sci., Part A: Polym. Chem.2004, 42, 5488–5503.

    CAS  Google Scholar 

  11. Zhang, S. S.; Cheng, X. X.; Wang, J. Z.; Zhang, Z. B.; Zhang, W.; Zhu, X. L. Synthesis of a cyclic-brush polymer with a high grafting density using activated ester chemistry via the “grafting onto” approach. Polym. Chem.2018, 9, 5155–5163.

    CAS  Google Scholar 

  12. Zhang, S. S.; Tezuka, Y.; Zhang, Z. B.; Li, N.; Zhang, W.; Zhu, X. L. Recent advances in the construction of cyclic grafted polymers and their potential applications. Polym. Chem.2018, 9, 677–686.

    CAS  Google Scholar 

  13. Lee, H. I.; Pietrasik, J.; Sheiko, S. S.; Matyjaszewski, K. Stimuli-responsive molecular brushes. Prog. Polym. Sci.2010, 35, 24–44.

    CAS  Google Scholar 

  14. McKee, M. G.; Unal, S.; Wilkes, G. L.; Long, T. E. Branched polyesters: recent advances in synthesis and performance. Prog. Polym. Sci.2005, 30, 507–539.

    CAS  Google Scholar 

  15. Sheiko, S. S.; Sumerlin, B. S.; Matyjaszewski, K. Cylindrical molecular brushes: synthesis, characterization, and properties. Prog. Polym. Sci.2008, 33, 759–785.

    CAS  Google Scholar 

  16. Zhang, M. F.; Müller, A. H. E. Cylindrical polymer brushes. J. Polym. Sci., Part A: Polym. Chem.2005, 43, 3461–3481.

    CAS  Google Scholar 

  17. Feng, C.; Li, Y. J.; Yang, D.; Hu, J. H.; Zhang, X. H.; Huang, X. Y. Well-defined graft copolymers: from controlled synthesis to multipurpose applications. Chem. Soc. Rev.2011, 40, 1282–1295.

    CAS  PubMed  Google Scholar 

  18. Tan, H. G.; Xia, G.; Liu, L. X.; Niu, X. H.; Hao, Q. H. Surface patterns of a tetrahedral polyelectrolyte brush induced by grafting density and charge fraction. Chinese J. Polym. Sci.2020, 38, 394–402.

    CAS  Google Scholar 

  19. Han, X. H.; Yang, X. W.; Chen, S.; Luo, H.; Zhang, D.; Zhang, H. L. Multiple effects tailoring the self-organization behaviors of triphenylene side-chain liquid crystalline polymers via changing the spacer length. Chinese J. Polym. Sci.2018, 36, 960–969.

    CAS  Google Scholar 

  20. Johnson, J. A.; Lu, Y. Y.; Burts, A. O.; Xia, Y.; Durrell, A. C.; Tirrell, D. A.; Grubbs, R. H. Drug-loaded, bivalent-bottle-brush polymers by graft-through ROMP. Macromolecules2010, 43, 10326–10335.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Hawker, C. J. Architectural control in living free-radical polymerizations—preparation of star and graft polymers. Angew. Chem. Int. Ed.1995, 34, 1456–1459.

    CAS  Google Scholar 

  22. Pakula, T.; Zhang, Y.; Matyjaszewski, K.; Lee, H. I.; Boerner, H.; Qin, S.; Berry, G. C. Molecular brushes as super-soft elastomers. Polymer2006, 47, 7198–7206.

    CAS  Google Scholar 

  23. Chen, J.; Huang, Z. Y. Elastic behavior of comb-like polymer chains. Chinese J. Polym. Sci.2010, 28, 311–322.

    CAS  Google Scholar 

  24. Heinrich, C. D.; Thelakkat, M. Poly-(3-hexylthiophene) bottlebrush copolymers with tailored side-chain lengths and high charge carrier mobilities. J. Mater. Chem. C2016, 4, 5370–5378.

    CAS  Google Scholar 

  25. Yuan, J. Y.; Xu, Y. Y.; Walther, A.; Bolisetty, S.; Schumacher, M.; Schmalz, H.; Ballauff, M.; Müller, A. H. E. Water-soluble organosilica hybrid nanowires. Nat. Mater.2008, 7, 718–722.

    CAS  PubMed  Google Scholar 

  26. Lee, S.; Spencer, N. D. Poly(L-lysine)-graft-poly(ethylene glycol): a versatile aqueous lubricant additive for tribosystems involving thermoplastics. Lubr. Sci.2008, 20, 21–34.

    CAS  Google Scholar 

  27. Kobayashi, M.; Terayama, Y.; Hosaka, N.; Kaido, M.; Suzuki, A.; Yamada, N.; Torikai, N.; Ishihara, K.; Takahara, A. Friction behavior of high-density poly(2-methacryloyloxyethyl phosphorylcholine) brush in aqueous media. Soft Matter2007, 3, 740–746.

    CAS  PubMed  Google Scholar 

  28. Hong, C. Y.; You, Y. Z.; Liu, J.; Pan, C. Y. Dendrimer-star polymer and block copolymer prepared by reversible addition-fragmentation chain transfer (RAFT) polymerization with dendritic chain transfer agent. J. Polym. Sci., Part A: Polym. Chem. 2005, 43, 6379–6393.

    CAS  Google Scholar 

  29. Tomalia, D. A.; Fréchet, J. M. J. Discovery of dendrimers and dendritic polymers: a brief historical perspective. J. Polym. Sci., Part A: Polym. Chem.2002, 40, 2719–2728.

    CAS  Google Scholar 

  30. Sun, H.; Kabb, C. P.; Sims, M. B.; Sumerlin, B. S. Architecture-transformable polymers: reshaping the future of stimuli-responsive polymers. Prog. Polym. Sci.2019, 89, 61–75.

    CAS  Google Scholar 

  31. Naoto, S.; Asai, S.; Tezuka, Y.; Yamamoto, T. Photoinduced topological transformation of cyclized polylactides for switching the properties of homocrystals and stereocomplexes. Polym. Chem.2015, 6, 3591–3600.

    Google Scholar 

  32. Mo, B.; Liu, H.; Zhou, X.; Zhao, Y. Facile synthesis of photolabile dendritic-unit-bridged hyperbranched graft copolymers for stimuli-triggered topological transition and controlled release of Nile red. Polym. Chem.2015, 6, 3489–3501.

    CAS  Google Scholar 

  33. Aoki, D.; Aibara, G.; Uchida, S.; Takata, T. A rational entry to cyclic polymers via selective cyclization by self-assembly and topology transformation of linear polymers. J. Am. Chem. Soc.2017, 139, 6791–6794.

    CAS  PubMed  Google Scholar 

  34. Ogawa, T.; Nakazono, K.; Aoki, D.; Uchida, S.; Takata, T. Effective approach to cyclic polymer from linear polymer: synthesis and transformation of macromolecular [1]Rotaxane. ACS Macro Lett.2015, 4, 343–347.

    CAS  Google Scholar 

  35. Aoki, D.; Uchida, S.; Takata, T. Star/linear polymer topology transformation facilitated by mechanical linking of polymer chains. Angew. Chem. Int. Ed.2015, 54, 6770–6774.

    Google Scholar 

  36. Whittaker, M. R.; Goh, Y.-K.; Gemici, H.; Legge, T. M.; Perrier, S.; Monteiro, M. J. Synthesis of monocyclic and linear polystyrene using the reversible coupling/cleavage of thiol/disulfide groups. Macromolecules2006, 39, 9028–9034.

    CAS  Google Scholar 

  37. Schappacher, M.; Deffieux, A. Reversible switching between linear and ring poly(EO)s bearing iron tetraphenylporphyrin ends triggered by solvent, pH, or redox stimuli. Macromolecules2011, 44, 4503–4510.

    CAS  Google Scholar 

  38. Yamamoto, T.; Yagyu, S.; Tezuka, Y. Light- and heat-triggered reversible linear-cyclic topological conversion of telechelic polymers with anthryl end groups. J. Am. Chem. Soc. 2016, 138, 3904–3911.

    CAS  PubMed  Google Scholar 

  39. Zhao, Y.; Tremblay, L.; Zhao, Y. Phototunable LCST of water-soluble polymers: exploring a topological Effect. Macromolecules2011, 44, 4007–4011.

    CAS  Google Scholar 

  40. Sun, H.; Kabb, C. P.; Dai, Y.; Hill, M. R.; Ghiviriga, I.; Bapat, A. P.; Sumerlin, B. S. Macromolecular metamorphosis via stimulus-induced transformations of polymer architecture. Nat. Chem. 2017, 9, 817–823.

    CAS  PubMed  Google Scholar 

  41. Bapat, A. P.; Ray, J. G.; Savin, D. A.; Hoff, E. A.; Patton, D. L.; Sumerlin, B. S. Dynamic-covalent nanostructures prepared by Diels-Alder reactions of styrene-maleic anhydride-derived copolymers obtained by one-step cascade block copolymerization. Polym. Chem.2012, 3, 3112–3120.

    CAS  Google Scholar 

  42. Ji, Y.; Zhang, L.; Gu, X.; Zhang, W.; Zhou, N.; Zhang, Z.; Zhu, X. Sequence-controlled polymers with furan-protected maleimide as a latent monomer. Angew. Chem. Int. Ed.2017, 56, 2328–2333.

    CAS  Google Scholar 

  43. Gu, X.; Zhang, L. Q.; Li, Y.; Zhang, W.; Zhu, J.; Zhang, Z. B.; Zhu, X. L. Facile synthesis of advanced gradient polymers with sequence control using furan-protected maleimide as a comonomer. Polym. Chem.2018, 9, 1571–1576.

    CAS  Google Scholar 

  44. Meng, F. Y.; Zhang, Y. J.; Ding, K. S.; Liu, B. L.; Han, F. F.; He, Y. Y.; Zhou, N. C.; Zhang, Z. B.; Zhu, X. L. One-shot synthesis of sequence-controlled polymers with versatile succimide motifs for post-modifications. React. Funct. Polym.2019, 134, 67–73.

    CAS  Google Scholar 

  45. Zhang, L. Q.; Ji, Y. X.; Gu, X.; Zhang, W.; Zhou, N. C.; Zhang, Z. B.; Zhu, X. L. Synthesis of sequence-controlled polymers with pendent “clickable” or hydrophilic groups via latent monomer strategy. React. Funct. Polym.2019, 138, 96–103.

    CAS  Google Scholar 

  46. Zhu, J.; Zhu, X. L.; Kang, E. T.; Neoh, K. G. Design and synthesis of star polymers with hetero-arms by the combination of controlled radical polymerizations and click chemistry. Polymer2007, 48, 6992–6999.

    CAS  Google Scholar 

  47. Li, Y.; Zhou, Y. Y.; Zhou, Y.; Yu, Q.; Zhu, J.; Zhou, N. C.; Zhang, Z. B.; Zhu, X. L. Dynamic furan/maleimide bond-incorporated cyclic polymer for topology transformation. React. Funct. Polym. 2017, 116, 41–48.

    CAS  Google Scholar 

  48. Glassner, M.; Blinco, J. P.; Barner-Kowollik, C. Formation of nanoporous materials via mild retro-Diels-Alder chemistry. Polym. Chem.2011, 2, 83–87.

    CAS  Google Scholar 

  49. Behrendt, F. N.; Schlaad, H. Metathesis polymerization of cystine-based macrocycles. Polym. Chem.2017, 8, 366–369.

    CAS  Google Scholar 

  50. Pfeifer, S.; Lutz, J. F. A facile procedure for controlling monomer sequence distribution in radical chain polymerizations. J. Am. Chem. Soc.2007, 129, 9542–9543.

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was financially supported by the National Natural Science Foundation of China (Nos. 21925107 and 21674072), the Collaborative Innovation Center of Suzhou Nano Science and Technology, the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD), and the Program of Innovative Research Team of Soochow University.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Wei Zhang or Zheng-Biao Zhang.

Electronic Supplementary Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, LQ., Gao, Y., Huang, ZH. et al. Controllably Growing Topologies in One-shot RAFT Polymerization via Macro-latent Monomer Strategy. Chin J Polym Sci 39, 60–69 (2021). https://doi.org/10.1007/s10118-020-2463-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10118-020-2463-1

Keywords

Navigation