Skip to main content
Log in

4-Methyl-7-Amino/Amido Coumarin Derivatives as Potential Antimicrobials and Antioxidants

  • Published:
Chemistry of Natural Compounds Aims and scope

An array of previously synthesized 4-methyl-7-amino and amido coumarins 4a–u has been screened for their antimicrobial and antioxidant properties. Some of the compounds exhibited promising antibacterial and antifungal activities (MIC ranging from 4–64 μg/mL) when compared to the respective standards. Compound 4u showed comparable antibacterial activity with the standard, ciprofloxacin, whereas compounds 4u and 4t displayed promising antifungal activity when compared to the standard, fluconazole. The in silico docking studies against gyrase enzyme revealed the fact that 4u possessed hydrogen bonding and significant hydrophobic interactions, which may be the reason for its superior antibacterial activity as compared to the other compounds. Compounds 4c and 4m showed comparable antioxidant activity with the standard, BHT, which can be attributed to the presence of electron-donating substituents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1.
Fig. 2.

Similar content being viewed by others

References

  1. F. Borges, F. Roleira, N. Milhazes, L. Santana, and E. Uriarte, Curr. Med. Chem., 12, 887 (2005).

    Article  CAS  Google Scholar 

  2. M. A. Al-Haiza and M. S. Mostafa, Molecules, 8, 275 (2003).

    Article  CAS  Google Scholar 

  3. K. C. Fylaktakidou and D. H. Litina, J. Curr. Pharm. Des., 10, 3813 (2004).

    Article  CAS  Google Scholar 

  4. N. Lall, A. A. Hussein, and J. J. M. Meyer, Fitoterapia, 77, 230 (2006).

    Article  CAS  Google Scholar 

  5. I. Kostova, S. Raleva, P. Genova, and R. Argirova, Bioinorg. Chem. Appl., 2006, 1 (2006).

    Google Scholar 

  6. J. W. Hinman, H. Hoeksema, E. L. Caron, and W. G. Jackson, J. Am. Chem. Soc., 78, 1072 (1956).

    Article  CAS  Google Scholar 

  7. Shaveta, S. Mishra, and P. Singh, Eur. J. Med. Chem., 124, 500 (2016).

    Article  CAS  Google Scholar 

  8. K. Hemalatha and G. Madhumitha, Eur. J. Med. Chem., 123, 596 (2016).

    Article  CAS  Google Scholar 

  9. M. N. Joy, Y. D. Bodke, K. K. A. Khader, M. S. A. Padusha, A. M. Sajith, and A. Muralidharan, RSC Adv., 4, 19766 (2014).

    Article  CAS  Google Scholar 

  10. A. M. Sajith, K. K. A. Khader, N. Joshi, M. N. Reddy, M. S. A. Padusha, H. P. Nagaswarupa, M. N. Joy, Y. D. Bodke, R. P. Karuvalam, R. Banerjee, A. Muralidharan, and P. Rajendra, Eur. J. Med. Chem., 89, 21 (2015).

    Article  CAS  Google Scholar 

  11. C. Aswathanarayanappa, E. Bheemappa, Y. D. Bodke, P. S. Krishnegowda, S. P. Venkata, and R. Ningegowda, Arch. Pharm. Chem. Life Sci., 346, 922 (2013).

    Article  CAS  Google Scholar 

  12. M. K. Potdar, S. S. Mohile, and M. M. Salunkhe, Tetrahedron Lett., 42, 9285 (2001).

    Article  CAS  Google Scholar 

  13. M. A. Parker, D. M. Kurrasch, and D. E. Nichols, Bioorg. Med. Chem., 16, 4661 (2008).

    Article  CAS  Google Scholar 

  14. E. Niki, Chem. Phys. Lipids, 44, 227 (1987).

    Article  CAS  Google Scholar 

  15. M. J. Matos, F. P. Cruz, S. V. Rodriguez, E. Uriarte, L. Santana, F. Borges, and C. O. Azar, Bioorg. Med. Chem., 21, 3900 (2013).

    Article  CAS  Google Scholar 

  16. C. Yamagami, M. Akamatsu, N. Motohashi, S. Hamada, and T. Tanahashi, Bioorg. Med. Chem. Lett., 15, 2845 (2005).

    Article  CAS  Google Scholar 

  17. B. J. Bradbury and M. J. Pucci, Curr. Opin. Pharmacol., 8, 574 (2008).

    Article  CAS  Google Scholar 

  18. Y. C. Tse-Dinh, Infect. Disord. Drug Targets, 7, 3 (2007).

    Article  CAS  Google Scholar 

  19. B. A. A. Skaggs, M. Molestely, D. W. Warnock, and C. J. Morrison, J. Clin. Microbiol., 38, 2254 (2000).

    Article  Google Scholar 

  20. D. J. M. Lowry, M. J. Jaqua, and S. T. Selepak, Appl. Microbiol., 20, 46 (1970).

    Article  Google Scholar 

  21. A. Braca, N. D. Tommasi, L. D. Bari, C. Pizza, M. Politi, and I. Morelli, J. Nat. Prod., 64, 892 (2001).

    Article  CAS  Google Scholar 

  22. T. Sander, J. Freyss, M. V. Korff, J. R. Reich, and C. Rufener, J. Chem. Inform. Model., 49, 232 (2009).

    Article  CAS  Google Scholar 

  23. O. Trott and A. J. Olson, J. Comput. Chem., 31, 455 (2010).

    CAS  PubMed  PubMed Central  Google Scholar 

  24. B. D. Bax, P. F. Chan, D. S. Eggleston, A. Fosberry, D. R. Gentry, and F. Gorrec, Nature, 466, 935 (2010).

    Article  Google Scholar 

  25. G. M. Morris, D. S. Goodsell, R. S. Halliday, R. Huey, W. E. Hart, and R. K. Belew, J. Comput. Chem., 19, 1639 (1998).

    Article  CAS  Google Scholar 

  26. R. A. Laskowski and M. B. Swindells, J. Chem. Inform. Model., 51, 2778 (2011).

    Article  CAS  Google Scholar 

  27. W. DeLano, The PyMOL Molecular Graphics System (2002), http://www.citeulike.org/group/340/article/240061 ().

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muthipeedika Nibin Joy.

Additional information

Published in Khimiya Prirodnykh Soedinenii, No. 4, July–August, 2020, pp. 531–536.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Joy, M.N., Bodke, Y.D. & Telkar, S. 4-Methyl-7-Amino/Amido Coumarin Derivatives as Potential Antimicrobials and Antioxidants. Chem Nat Compd 56, 614–620 (2020). https://doi.org/10.1007/s10600-020-03106-y

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10600-020-03106-y

Keywords

Navigation